Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.
Google Scholar
Xia CF, Dong XS, Li H, Cao MM, Sun DQ, He SY, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90.
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Google Scholar
Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.
CAS
Google Scholar
Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin. 2016;11:435–49.
Google Scholar
Velikova G, Morden JP, Haviland JS, Emery C, Barrett-Lee P, Earl H, et al. Accelerated versus standard epirubicin followed by cyclophosphamide, methotrexate, and fluorouracil or capecitabine as adjuvant therapy for breast cancer (UK TACT2; CRUK/05/19): quality of life results from a multicentre, phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2023;24(12):1359–74.
CAS
Google Scholar
Lu S, Tian H, Li B, Li L, Jiang H, Gao Y, et al. An ellagic acid coordinated copper-based nanoplatform for efficiently overcoming cancer chemoresistance by cuproptosis and synergistic inhibition of cancer cell stemness. Small. 2024;20(17): e2309215.
Google Scholar
Ge XG, Fu QR, Su LC, Li Z, Zhang WM, Chen T, et al. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics. 2020;10(11):4809–21.
CAS
Google Scholar
Liu SE, Jiang YX, Liu PC, Yi Y, Hou DY, Li Y, et al. Single-atom gadolinium nano-contrast agents with high stability for tumor T1 magnetic resonance imaging. ACS Nano. 2023;17(9):8053–63.
CAS
Google Scholar
Liao T, Chen ZY, Kuang Y, Ren Z, Yu WQ, Rao W, et al. Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater. 2023;159:312–23.
CAS
Google Scholar
Liu Y, Wang YH, Song SY, Zhang HJ. Tumor diagnosis and therapy mediated by metal phosphorus-based nanomaterials. Adv Mater. 2021;33(49): e2103936.
Google Scholar
Bai X, Wang SQ, Yan XL, Zhou HY, Zhan JH, Liu SJ, et al. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS Nano. 2020;14(1):289–302.
CAS
Google Scholar
Wen W, Wu L, Chen Y, Qi XY, Cao J, Zhang X, et al. Ultra-small Fe3O4 nanoparticles for nuclei targeting drug delivery and photothermal therapy. J Drug Deliv Sci Technol. 2020;58:101782.
CAS
Google Scholar
Luo MC, Yukawa H, Sato K, Tozawa M, Tokunaga M, Kameyama T, et al. Multifunctional magnetic CuS/Gd2O3 nanoparticles for fluorescence/magnetic resonance bimodal imaging-guided photothermal-intensified chemodynamic synergetic therapy of targeted tumors. ACS Appl Mater Interfaces. 2022;14(30):34365–76.
CAS
Google Scholar
Wang M, Chang MY, Chen Q, Wang DM, Li CX, Hou ZY, et al. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials. 2020;252:120093.
CAS
Google Scholar
Alfano M, Alchera E, Sacchi A, Gori A, Quilici G, Locatelli I, et al. A simple and robust nanosystem for photoacoustic imaging of bladder cancer based on a5β1-targeted gold nanorods. J Nanobiotechnology. 2023;21(1):301.
CAS
Google Scholar
Guo WH, Ren YX, Chen Z, Shen GD, Lu YD, Zhou HM, et al. Targeted magnetic resonance imaging/near-infrared dual-modal imaging and ferroptosis/starvation therapy of gastric cancer with peritoneal metastasis. Adv Funct Mater. 2023;33(27):2213921.
CAS
Google Scholar
Li SY, Sun WJ, Luo Y, Gao YP, Jiang XP, Yuan C, et al. Hollow PtCo alloy nanospheres as a high-Z and oxygen generating nanozyme for radiotherapy enhancement in non-small cell lung cancer. J Mater Chem B. 2021;9(23):4643–53.
CAS
Google Scholar
Li L, Qi FL, Guo J, Fan J, Zheng WX, Ghulam M, et al. Photothermal therapy for cancer cells using optically tunable Fe2O3@Au hexagonal nanodisks. J Mater Chem A. 2023;11(39):21365–72.
CAS
Google Scholar
Cao XS, Li MX, Liu QY, Zhao JJ, Lu XH, Wang JW. Inorganic sonosensitizers for sonodynamic therapy in cancer treatment. Small. 2023;19(42):e2303195.
Google Scholar
Liu Y, Zhao H, Wang SH, Niu R, Bi S, Han WK, et al. A wurster-type covalent organic framework with internal electron transfer-enhanced catalytic capacity for tumor therapy. J Am Chem Soc. 2024;146(40):27345–61.
CAS
Google Scholar
Cao SJ, Long YP, Xiao ST, Deng YT, Ma L, Adeli M, et al. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev. 2023;52(19):6838–81.
CAS
Google Scholar
Liu YY, Zhang M, Bu WB. Bioactive nanomaterials for ion-interference therapy. View. 2020;1(2):e18.
Google Scholar
Li JX, Ren H, Zhang YM. Metal-based nano-vaccines for cancer immunotherapy. Coord Chem Rev. 2022;455:214345.
CAS
Google Scholar
Yang J, Dai DH, Zhang X, Teng LS, Ma LJ, Yang YW. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: from single to combination therapy. Theranostics. 2023;13(1):295–323.
CAS
Google Scholar
Ding JY, He ZJ, Zhai YJ, Ye L, Ji JB, Yang XY, et al. Advances in metal-based nano drugs and diagnostic probes for tumor. Coord Chem Rev. 2024;501:215594.
CAS
Google Scholar
Zhang JJ, Wang XF, Wen J, Su XD, Weng LX, Wang CY, et al. Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomater Sci. 2019;7(11):4790–9.
CAS
Google Scholar
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
CAS
Google Scholar
Dawi EA, Ismail AH, Abdelkader A, Karar AA. Sputtering of size-tunable oxidized Fe nanoparticles by gas flow method. Appl Phys A Mater Sci Process. 2020;126(4):316.
CAS
Google Scholar
Zhao PY, Gao XF, Zhao B, Wang SB, Zhang D, Wu X, et al. Investigation on nano-grinding process of GaN using molecular dynamics simulation: nano-grinding parameters effect. J Manuf Process. 2023;102:429–42.
Google Scholar
Liu L, Wang SZ, Zhang BQ, Jiang GY, Yang JQ. Supercritical hydrothermal synthesis of nano-ZrO2: influence of technological parameters and mechanism. J Alloy Compd. 2022;898:162878.
CAS
Google Scholar
Fu SY, Yang RH, Ren JJ, Liu JH, Zhang L, Xu ZG, et al. Catalytically active CoFe2O4 nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano. 2021;15(7):11953–69.
CAS
Google Scholar
Liang ZW, Wang YH, Wang JP, Xu T, Ma SL, Liu Q, et al. Multifunctional Fe3O4-PEI@HA nanoparticles in the ferroptosis treatment of hepatocellular carcinoma through modulating reactive oxygen species. Colloids Surf B Biointerfaces. 2023;227:113358.
CAS
Google Scholar
Caraballo-Vivas RJ, Santos ECS, Valente-Rodrigues CL, Checca NR, Garcia F. Tuning between composition and nanoparticle size of manganites for self-regulated magnetic hyperthermia applications. J Phys D Appl Phys. 2023;56(25):255001.
CAS
Google Scholar
Anitha S, Muthukumaran S. Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Mater Sci Eng C Mater Biol Appl. 2020;108:110387.
CAS
Google Scholar
Gholizadeh Z, Aliannezhadi M, Ghominejad M, Tehrani FS. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method. Sci Rep. 2023;13(1):6131.
CAS
Google Scholar
Deng H, Xu H, Zhou JZ, Tang DS, Yang WQ, Hu M, et al. Multi-element imaging of urinary stones by LA-ICP-MS with a homogeneous co-precipitation CaC2O4-matrix calibration standard. Anal Bioanal Chem. 2023;415(9):1751–64.
CAS
Google Scholar
Alemayehu A, Zakharanka A, Tyrpekl V. Homogeneous precipitation of lanthanide oxalates. ACS Omega. 2022;7(14):12288–95.
CAS
Google Scholar
Wu KJ, Tse ECM, Shang CX, Guo ZX. Nucleation and growth in solution synthesis of nanostructures-from fundamentals to advanced applications. Prog Mater Sci. 2022;123:100821.
CAS
Google Scholar
Lunin AV, Kolychev EL, Mochalova EN, Cherkasov VR, Nikitin MP. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method. J Colloid Interface Sci. 2019;541:143–9.
CAS
Google Scholar
Sivakumar S, Venkatesan A, Soundhirarajan P, Khatiwada CP. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136 Pt C:1751–9.
CAS
Google Scholar
Liu J, Li L, Zhang B, Xu ZP. MnO2-shelled doxorubicin/curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. J Colloid Interface Sci. 2022;617:315–25.
CAS
Google Scholar
Zhang LF, Lu H, Tang Y, Lu XJ, Zhang ZD, Zhang Y, et al. Calcium-peroxide-mediated cascades of oxygen production and glutathione consumption induced efficient photodynamic and photothermal synergistic therapy. J Mater Chem B. 2023;11(13):2937–45.
CAS
Google Scholar
Abadi B, Hosseinalipour S, Nikzad S, Pourshaikhali S, Fathalipour-Rayeni H, Shafiei G, et al. Capping agents for selenium nanoparticles in biomedical applications. J Clust Sci. 2023;34(4):1669–90.
CAS
Google Scholar
Bleier GC, Watt J, Simocko CK, Lavin JM, Huber DL. Reversible magnetic agglomeration: a mechanism for thermodynamic control over nanoparticle size. Angew Chem Int Ed Engl. 2018;57(26):7678–81.
CAS
Google Scholar
Taheri-Ledari R, Salehi MM, Esmailzadeh F, Mohammadi A, Kashtiaray A, Maleki A. A brief survey of principles of co-deposition method as a convenient procedure for preparation of metallic nanomaterials. J Alloy Compd. 2024;980: 173509.
CAS
Google Scholar
Pezeshk-Fallah H, Yari H, Mahdavian M, Ramezanzadeh B. Size/porosity-controlled zinc-based nanoporous-crystalline metal-organic frameworks for application in a high-performance self-healing epoxy coating. Prog Org Coat. 2023;183:107814.
CAS
Google Scholar
Darwish MSA, Kim H, Lee H, Ryu C, Lee JY, Yoon J. Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials (Basel). 2019;9(8):1176.
CAS
Google Scholar
Darwish MSA, Al-Harbi LM, Bakry A. Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application. J Therm Anal Calorim. 2022;147(21):11921–30.
CAS
Google Scholar
Chin YC, Yang LX, Hsu FT, Hsu CW, Chang TW, Chen HY, et al. Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J Nanobiotechnology. 2022;20(1):373.
CAS
Google Scholar
Hachem K, Ansari MJ, Saleh RO, Kzar HH, Al-Gazally ME, Altimari US, et al. Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review. BioNanoScience. 2022;12(3):1032–57.
Google Scholar
Yu ZF, He YY, Schomann T, Wu KF, Hao Y, Suidgeest E, et al. Achieving effective multimodal imaging with rare-earth ion-doped CaF2 nanoparticles. Pharmaceutics. 2022;14(4):840.
CAS
Google Scholar
Thendral KT, Amutha M, Ragunathan R. Design and development of copper cobaltite (CuCo2O4) nanoparticle for antibacterial anticancer and photocatalytic activity. Mater Lett. 2023;349:134720.
Google Scholar
Fakhraian H, Nassimi A, Javadi N. Reinvestigating the synthesis and properties of high energetic MOFs based on 5,5′-bistetrazole-1,1′-diolate (BTO2-) and some transition metal cations (Pb2+, Cu2+and Ag+). Inorg Chim Acta. 2023;553:121520.
CAS
Google Scholar
He N, Zhu XL, Liu FX, Yu R, Xue ZH, Liu XH. Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates. Chem Eng J. 2022;445:136543.
CAS
Google Scholar
Supriya S, Das S, Senapati S, Naik R. One-pot hydrothermal synthesis of Cu2Te/NiTe nanocomposite materials: a structural, morphological, and optical study. J Am Ceram Soc. 2023;106(10):5955–64.
CAS
Google Scholar
Wijakmatee T, Shimoyama Y, Orita Y. Systematically designed surface and morphology of magnetite nanoparticles using monocarboxylic acid with various chain lengths under hydrothermal condition. Langmuir. 2023;39(26):9253–61.
CAS
Google Scholar
Wang XB, Cheng Y, Han XQ, Yan J, Wu YY, Song PP, et al. Functional 2D iron-based nanosheets for synergistic immunotherapy, phototherapy, and chemotherapy of tumor. Adv Healthc Mater. 2022;11(19):e2200776.
Google Scholar
Ul Hassan SM, Akram W, Saifullah A, Khurshid A, Ali Z, Shahzad F, et al. Novel PEGylated ZnO nanoparticles with optimized Y dopant exhibiting PL imaging, PDT and CT contrast properties. Mater Lett. 2022;315:131986.
Google Scholar
Xu ZP, Stevenson GS, Lu CQ, Lu GQM, Bartlett PF, Gray PP. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J Am Chem Soc. 2006;128(1):36–7.
CAS
Google Scholar
Tong YC, Feng M, Wei JH, Wang DT, Wang QY. One-step synthesis of CoFe2O4 nanomaterials by solvothermal method. Bull Chem Soc Jpn. 2022;95(7):1086–90.
CAS
Google Scholar
Ranoo S, Lahiri BB, Damodaran SP, Philip J. Tuning magnetic heating efficiency of colloidal dispersions of iron oxide nano-clusters by varying the surfactant concentration during solvothermal synthesis. J Mol Liq. 2022;360:119444.
CAS
Google Scholar
Li XJ, Li B, Li R, Yao YZ, Fan N, Qi R, et al. Synthesis of an efficient paramagnetic ZnFe2O4 agent for NIR-I/II responsive photothermal performance. J Alloy Compd. 2023;936:168161.
CAS
Google Scholar
Yeste MP, Fernández-Ponce C, Félix E, Tinoco M, Fernández-Cisnal R, García-Villar C, et al. Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques. Ceram Int. 2022;48(21):31191–202.
CAS
Google Scholar
Asakura Y, Akahira T, Kobayashi M, Osada M, Yin S. Synthesis of NaMoO3F and Na5W3O9F5 with morphological controllability in non-aqueous solvents. Inorg Chem. 2020;59(15):10707–16.
CAS
Google Scholar
Duong HDT, Yoon SH, Nguyen DT, Kim KS. Magnetic heating of water dispersible and size-controlled superparamagnetic cobalt iron oxide nanoparticles. Powder Technol. 2023;427:118720.
CAS
Google Scholar
Duong HDT, Nguyen DT, Kim KS. Effects of process variables on properties of CoFe2O4 nanoparticles prepared by solvothermal process. Nanomaterials (Basel). 2021;11(11):3056.
CAS
Google Scholar
Kelly SN, Russo DR, Arino T, Smith PW, Straub MD, Arnold J, et al. Precursor identity and surfactant concentration influence shape of UO2 nanoparticles. Inorg Chem. 2025;64(16):8117–24.
CAS
Google Scholar
Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133(32):12624–31.
CAS
Google Scholar
Sobhani A, Salavati-Niasari M. Simple synthesis and characterization of nickel phosphide nanostructures assisted by different inorganic precursors. J Mater Sci Mater Electron. 2016;27(4):3619–27.
CAS
Google Scholar
Singapati AY, Ravikumar C. Mechanism of nanoparticle formation in the liquid-phase thermal decomposition method. Langmuir. 2023;39(27):9325–42.
CAS
Google Scholar
Fokina V, Wilke M, Dulle M, Ehlert S, Förster S. Size control of iron oxide nanoparticles synthesized by thermal decomposition methods. J Phys Chem C. 2022;126(50):21356–67.
CAS
Google Scholar
Liu JH, Jin LH, Wang YH, Ding X, Zhang ST, Song SY, et al. A new Co-P nanocomposite with ultrahigh relaxivity for in vivo magnetic resonance imaging-guided tumor eradication by chemo/photothermal synergistic therapy. Small. 2018;14(7):1702431.
Google Scholar
Dong PL, Zhang TT, Xiang HJ, Xu X, Lv YH, Wang Y, et al. Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J Mater Chem B. 2021;9(4):958–68.
CAS
Google Scholar
Demessie AA, Park Y, Singh P, Moses AS, Korzun T, Sabei FY, et al. An advanced thermal decomposition method to produce magnetic nanoparticles with ultrahigh heating efficiency for systemic magnetic hyperthermia. Small Methods. 2022;6(12):e2200916.
Google Scholar
Feld A, Weimer A, Kornowski A, Winckelmans N, Merkl JP, Kloust H, et al. Chemistry of shape-controlled iron oxide nanocrystal formation. ACS Nano. 2019;13(1):152–62.
CAS
Google Scholar
Daneshmand-Jahromi S, Sedghkerdar MH, Mahinpey N. Synthesis, characterization, and kinetic study of nanostructured copper-based oxygen carrier supported on silica and zirconia aerogels in the cyclic chemical looping combustion process. Chem Eng J. 2022;448:137756.
CAS
Google Scholar
An SY. Characterization of mossbauer and superparamagnetic properties in maghemite nanoparticles synthesized by a sol-gel method. J Electron Mater. 2023;52(9):6308–15.
CAS
Google Scholar
Miranda-López MI, Contreras-Torres FF, Cavazos-Cavazos D, Martínez-Ortiz PF, Pineda-Aguilar N, Hernández MB, et al. Crystal evolution of nano-sized CoCr2O4 synthesized by a modified sol-gel method. J Phys Chem Solids. 2023;178:111315.
Google Scholar
Danks AE, Hall SR, Schnepp Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater Horizons. 2016;3(2):91–112.
CAS
Google Scholar
Sumida K, Liang K, Reboul J, Ibarra IA, Furukawa S, Falcaro P. Sol-gel processing of metal-organic frameworks. Chem Mat. 2017;29(7):2626–45.
CAS
Google Scholar
Arya S, Mahajan P, Mahajan S, Khosla A, Datt R, Gupta V, et al. Review-influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J Solid State Sci Technol. 2021;10(2):023002.
CAS
Google Scholar
Yang C, Su ZL, Wang YS, Fan HL, Liang MS, Chen ZH. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents. Chin J Chem Eng. 2023;56:233–41.
CAS
Google Scholar
Lal M, Sharma P, Ram C. Calcination temperature effect on titanium oxide (TiO2) nanoparticles synthesis. Optik. 2021;241:166934.
CAS
Google Scholar
Rodríguez-Barajas N, Becerra-Solano L, Gutiérrez-Mercado YK, Macías-Carballo M, Gómez CM, Pérez-Larios A. Study of the interaction of Ti-Zn as a mixed oxide at different pH values synthesized by the sol-gel method and its antibacterial properties. Nanomaterials (Basel). 2022;12(12):1948.
Google Scholar
Sheikhi S, Aliannezhadi M, Tehrani FS. Effect of precursor material, pH, and aging on ZnO nanoparticles synthesized by one-step sol-gel method for photodynamic and photocatalytic applications. Eur Phys J Plus. 2021;137(1):60.
Google Scholar
Xu N, Hu A, Pu XM, Li JF, Wang XM, Wang J, et al. Fe(III)-chelated polydopamine nanoparticles for synergistic tumor therapies of enhanced photothermal ablation and antitumor immune activation. ACS Appl Mater Interfaces. 2022;14(14):15894–910.
CAS
Google Scholar
Tavakol M, Hajipour MJ, Ferdousi M, Zanganeh S, Maurizi L. Competition of opsonins and dysopsonins on the nanoparticle surface. Nanoscale. 2023;15(43):17342–9.
CAS
Google Scholar
Grundler J, Whang C-H, Shin K, Savan NA, Zhong M, Saltzman WM. Modifying the backbone chemistry of PEG-based bottlebrush block copolymers for the formation of long-circulating nanoparticles. Adv Healthc Mater. 2024;13(22):e2304040.
Google Scholar
Deng Y, Huang F, Zhang J, Liu J, Li B, Ouyang RZ, et al. PEGylated iridium-based nano-micelle: self-assembly, selective tumor fluorescence imaging and photodynamic therapy. Dyes Pigment. 2020;182:108651.
CAS
Google Scholar
Shi LW, Zhang JQ, Zhao M, Tang SK, Cheng X, Zhang WY, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748–64.
CAS
Google Scholar
Dubey R, Shende P. Potential of brush and mushroom conformations in biomedical applications. Chem Pap. 2024;78(12):6873–89.
CAS
Google Scholar
Tian XS, Yuan YM. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv. 2024;14(29):20757–64.
CAS
Google Scholar
Wan Q, Yuan HM, Cai P, Liu Y, Yan T, Wang L, et al. Effects of PEGylation on imaging contrast of 68Ga-labeled bicyclic peptide PET probes targeting nectin-4. Mol Pharm. 2024;21(9):4430–40.
CAS
Google Scholar
Wang XW, Zhong XY, Cheng L. Titanium-based nanomaterials for cancer theranostics. Coord Chem Rev. 2021;430:213662.
CAS
Google Scholar
He Z, Guo YJ, Chen JZ, Luo HL, Liu XX, Zhang XM, et al. Unsaturated phospholipid modified FeOCl nanosheets for enhancing tumor ferroptosis. J Mater Chem B. 2023;11(9):1891–903.
CAS
Google Scholar
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–75.
CAS
Google Scholar
Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol. 2020;40(1):16–36.
Google Scholar
Yu FF, Wang TY, Wang YH, Liu TF, Xiong HJ, Liu L, et al. Nanozyme-nanoclusters in metal-organic framework: GSH triggered Fenton reaction for imaging guided synergistic chemodynamic-photothermal therapy. Chem Eng J. 2023;472:144910.
CAS
Google Scholar
Yu J, He XD, Zhang QF, Zhou DF, Wang ZG, Huang YB. Iodine conjugated Pt(IV) nanoparticles for precise chemotherapy with iodine-Pt guided computed tomography imaging and biotin-mediated tumor-targeting. ACS Nano. 2022;16(4):6835–46.
CAS
Google Scholar
Meng XQ, Fan HZ, Chen L, He JY, Hong CY, Xie JY, et al. Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy. Nat Commun. 2024;15(1):1626.
CAS
Google Scholar
Qin RX, Li S, Qiu YW, Feng YS, Liu YQ, Ding DD, et al. Carbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nat Commun. 2022;13(1):1938.
CAS
Google Scholar
Wang Z, Xing HY, Liu AN, Guan L, Li XC, He L, et al. Multifunctional nano-system for multi-mode targeted imaging and enhanced photothermal therapy of metastatic prostate cancer. Acta Biomater. 2023;166:581–92.
CAS
Google Scholar
Liu DL, Li JJ, Wang CB, An L, Lin JM, Tian QW, et al. Ultrasmall Fe@Fe3O4 nanoparticles as T1–T2 dual-mode MRI contrast agents for targeted tumor imaging. Nanomedicine. 2021;32:102335.
CAS
Google Scholar
Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, et al. X-ray computed tomography. Nat Rev Methods Primers. 2021;1(1):18.
CAS
Google Scholar
Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.
CAS
Google Scholar
Fitzgerald PF, Colborn RE, Edic PM, Lambert JW, Torres AS, Bonitatibus PJ, et al. CT image contrast of high-Z elements: phantom imaging studies and clinical implications. Radiology. 2016;278(3):723–33.
Google Scholar
Mazloumi M, Van Gompel G, Kersemans V, De Mey J, Buls N. The presence of contrast agent increases organ radiation dose in contrast-enhanced CT. Eur Radiol. 2021;31(10):7540–9.
CAS
Google Scholar
Deng YH, Wang XF, Wu X, Yan P, Liu Q, Wu T, et al. Differential renal proteomics analysis in a novel rat model of iodinated contrast-induced acute kidney injury. Ren Fail. 2023;45(1):2178821.
Google Scholar
Wu JJ, Shen JX, Wang WP, Jiang N, Jin HJ, Che XJ, et al. A novel contrast-induced acute kidney injury mouse model based on low-osmolar contrast medium. Ren Fail. 2022;44(1):1345–55.
Google Scholar
Gamboa P, De Vicente JS, Galán C, Jáuregui I, Segurola A, García-Lirio E, et al. Non-immediate hypersensitivity reactions to iomeprol: diagnostic value of skin tests and cross-reactivity with other iodinated contrast media. Allergy. 2022;77(12):3641–7.
Google Scholar
Cruje C, Dunmore-Buyze PJ, Grolman E, Holdsworth DW, Gillies ER, Drangova M. PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep. 2021;11(1):16603.
CAS
Google Scholar
Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. One pot synthesis of PEGylated bimetallic gold-silver nanoparticles for imaging and radiosensitization of oral cancers. Int J Nanomedicine. 2021;16:7103–21.
CAS
Google Scholar
Shariati A, Delavari HH, Poursalehi R. Synthesis and characterization of polydopamine nanoparticles functionalized with hyaluronic acid as a potentially targeted computed tomography contrast agent. BioNanoScience. 2023;13(2):564–75.
Google Scholar
Asadinezhad M, Azimian H, Ghadiri H, Khademi S. Gold nanoparticle parameters play an essential role as CT imaging contrast agents. J Nanostruct. 2021;11(4):668–77.
CAS
Google Scholar
Inose T, Oikawa T, Tokunaga M, Yamauchi N, Nakashima K, Kato C, et al. Development of composite nanoparticles composed of silica-coated nanorods and single nanometer-sized gold particles toward a novel X-ray contrast agent. Mater Sci Eng B Adv Funct Solid State Mater. 2020;262:114716.
CAS
Google Scholar
Xu JW, Cheng XJ, Chen FX, Li WJ, Xiao XH, Lai PX, et al. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy. J Mater Sci Technol. 2021;63:97–105.
CAS
Google Scholar
Guan ZP, Zhang TS, Zhu H, Lyu D, Sarangapani S, Xu QH, et al. Simultaneous imaging and selective photothermal therapy through aptamer-driven Au nanosphere clustering. J Phys Chem Lett. 2019;10(2):183–8.
CAS
Google Scholar
Xu PC, Wang R, Yang WQ, Liu YY, He DS, Ye ZX, et al. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnology. 2021;19(1):77.
CAS
Google Scholar
D’hollander A, Vande Velde G, Jans H, Vanspauwen B, Vermeersch E, Jose J, et al. Assessment of the theranostic potential of gold nanostars-a multimodal imaging and photothermal treatment study. Nanomaterials (Basel). 2020;10(11):2112.
Google Scholar
Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. 2019;9(1):14912.
Google Scholar
Haghighi RR, Chatterjee S, Chatterjee VV, Hosseinipanah S, Tadrisinik F. Dependence of the effective mass attenuation coefficient of gold nanoparticles on its radius. Phys Med. 2022;95:25–31.
Google Scholar
Wu MH, Zhang YY, Zhang Y, Wu MJ, Wu ML, Wu HY, et al. Tumor angiogenesis targeting and imaging using gold nanoparticle probe with directly conjugated cyclic NGR. RSC Adv. 2018;8(3):1706–16.
CAS
Google Scholar
Ashton JR, Gottlin EB, Patz EF, West JL, Badea CT. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One. 2018;13(11):e0206950.
Google Scholar
Amato C, Susenburger M, Lehr S, Kuntz J, Gehrke N, Franke D, et al. Dual-contrast photon-counting micro-CT using iodine and a novel bismuth-based contrast agent. Phys Med Biol. 2023;68(13):135001.
CAS
Google Scholar
Zelepukin IV, Ivanov IN, Mirkasymov AB, Shevchenko KG, Popov AA, Prasad PN, et al. Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J Control Release. 2022;349:475–85.
CAS
Google Scholar
Xu WJ, Cui P, Happonen E, Leppänen J, Liu LZ, Rantanen J, et al. Tailored synthesis of PEGylated bismuth nanoparticles for X-ray computed tomography and photothermal therapy: one-pot, targeted pyrolysis, and self-promotion. ACS Appl Mater Interfaces. 2020;12(42):47233–44.
CAS
Google Scholar
Shakeri M, Delavari HH, Montazerabadi A, Yourdkhani A. Hyaluronic acid-coated ultrasmall BiOI nanoparticles as a potentially targeted contrast agent for X-ray computed tomography. Int J Biol Macromol. 2022;217:668–76.
CAS
Google Scholar
Bao Q, Zhang Y, Liu XY, Yang T, Yue H, Yang MY, et al. Enhanced cancer imaging and chemo-photothermal combination therapy by cancer-targeting bismuth-based nanoparticles. Adv Opt Mater. 2023;11(11):2201482.
CAS
Google Scholar
Ghazanfari A, Marasini S, Miao X, Park JA, Jung KH, Ahmad MY, et al. Synthesis, characterization, and X-ray attenuation properties of polyacrylic acid-coated ultrasmall heavy metal oxide (Bi2O3, Yb2O3, NaTaO3, Dy2O3, and Gd2O3) nanoparticles as potential CT contrast agents. Colloid Surf A Physicochem Eng Asp. 2019;576:73–81.
CAS
Google Scholar
Tian YL, Yi WH, Shao QY, Ma MH, Bai L, Song RD, et al. Automatic-degradable Mo-doped W18O49 based nanotheranostics for CT/FL imaging guided synergistic chemo/photothermal/chemodynamic therapy. Chem Eng J. 2023;462:142156.
CAS
Google Scholar
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: state-of-the-art. Adv Drug Deliv Rev. 2022;189:114524.
CAS
Google Scholar
Greffier J, Villani N, Defez D, Dabli D, Si-Mohamed S. Spectral CT imaging: technical principles of dual-energy CT and multi-energy photon-counting CT. Diagn Interv Imaging. 2023;104(4):167–77.
Google Scholar
Lei P, Chen H, Feng C, Yuan X, Xiong ZL, Liu YL, et al. Noninvasive visualization of sub-5 mm orthotopic hepatic tumors by a nanoprobe-mediated positive and reverse contrast-balanced imaging strategy. ACS Nano. 2022;16(1):897–909.
CAS
Google Scholar
Li YH, Tan XX, Wang H, Ji XR, Fu Z, Zhang K, et al. Spectral computed tomography-guided photothermal therapy of osteosarcoma by bismuth sulfide nanorods. Nano Res. 2023;16(7):9885–93.
CAS
Google Scholar
Strange C, Shroff GS, Truong MT, Rohren EM. Pitfalls in interpretation of PET/CT in the chest. Semin Ultrasound CT MR. 2021;42(6):588–98.
Google Scholar
Ghosh S, Liang Y, Cai W, Chakravarty R. In situ radiochemical doping of functionalized inorganic nanoplatforms for theranostic applications: a paradigm shift in nanooncology. J Nanobiotechnology. 2025;23(1):407.
CAS
Google Scholar
Swidan MM, Abd El-Motaleb M, Sakr TM. Unraveling the diagnostic phase of 99mTc-doped iron oxide nanoprobe in sarcoma bearing mice. J Drug Deliv Sci Technol. 2022;78:103990.
CAS
Google Scholar
Heo GS, Zhao YF, Sultan D, Zhang XH, Detering L, Luehmann HP, et al. Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation. ACS Appl Mater Interfaces. 2019;11(22):19669–78.
CAS
Google Scholar
Shin TJ, Jung W, Ha JY, Kim BH, Kim YH. The significance of the visible tumor on preoperative magnetic resonance imaging in localized prostate cancer. Prostate Int. 2021;9(1):6–11.
Google Scholar
Stephen ZR, Kievit FM, Zhang MQ. Magnetite nanoparticles for medical MR imaging. Mater Today (Kidlington). 2011;14(7–8):330–8.
CAS
Google Scholar
Jeon M, Halbert MV, Stephen ZR, Zhang MQ. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv Mater. 2021;33(23):e1906539.
Google Scholar
Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10(1):1727–41.
CAS
Google Scholar
Caravan P, Ellison JJ, Mcmurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.
CAS
Google Scholar
Shahid I, Joseph A, Lancelot E. Use of real-life safety data from international pharmacovigilance databases to assess the importance of symptoms associated with gadolinium exposure. Invest Radiol. 2022;57(10):664–73.
CAS
Google Scholar
Ahmad MY, Liu SW, Tegafaw T, Al Saidi AKA, Zhao DJ, Liu Y, et al. Biotin-conjugated poly(acrylic acid)-grafted ultrasmall gadolinium oxide nanoparticles for enhanced tumor imaging. Eur J Inorg Chem. 2023;26(27): e202300430.
CAS
Google Scholar
Dai Y, Wu C, Wang S, Li Q, Zhang M, Li JJ, et al. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomedicine. 2018;14(2):547–55.
CAS
Google Scholar
Li JL, Jiang X, Shang LH, Li Z, Yang CL, Luo Y, et al. L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Deliv. 2021;28(1):134–43.
CAS
Google Scholar
Yang LJ, Wang LL, Huang GM, Zhang X, Chen LL, Li A, et al. Improving the sensitivity of T1 contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics. 2021;11(14):6966–82.
CAS
Google Scholar
Zeng JF, Jing LH, Hou Y, Jiao MX, Qiao RR, Jia QJ, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater. 2014;26(17):2694–8.
CAS
Google Scholar
Thapa B, Diaz-Diestra D, Beltran-Huarac J, Weiner BR, Morell G. Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Res Lett. 2017;12(1):312.
Google Scholar
Soleymani M, Khalighfard S, Khodayari S, Khodayari H, Kalhori MR, Hadjighassem MR, et al. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci Rep. 2020;10(1):1695.
CAS
Google Scholar
Rezayan AH, Kheirjou S, Edrisi M, Ardestani MS, Alvandi H. A modified PEG-Fe3O4 magnetic nanoparticles conjugated with D(+)glucosamine (DG): MRI contrast agent. J Inorg Organomet Polym Mater. 2022;32(6):1988–98.
CAS
Google Scholar
Shao HL, Min C, Issadore D, Liong M, Yoon TJ, Weissleder R, et al. Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics. 2012;2(1):55–65.
CAS
Google Scholar
Feng Z, Tang T, Wu TX, Yu XM, Zhang YH, Wang M, et al. Perfecting and extending the near-infrared imaging window. Light Sci Appl. 2021;10(1):197.
CAS
Google Scholar
Zhang X, Wang WL, Su LC, Ge XG, Ye JM, Zhao CY, et al. Plasmonic-fluorescent janus Ag/Ag2S nanoparticles for in situ H2O2-activated NIR-II fluorescence imaging. Nano Lett. 2021;21(6):2625–33.
CAS
Google Scholar
Guan XL, Zhang LY, Lai SJ, Zhang JM, Wei JY, Wang K, et al. Green synthesis of glyco-CuInS2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. J Nanobiotechnol. 2023;21(1):118.
CAS
Google Scholar
Yong KT, Law WC, Hu R, Ye L, Liu LW, Swihart MT, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev. 2013;42(3):1236–50.
CAS
Google Scholar
Awasthi P, An XY, Xiang JJ, Kalva N, Shen YQ, Li CY. Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging. Nanoscale. 2020;12(9):5678–84.
CAS
Google Scholar
Lian W, Tu DT, Hu P, Song XR, Gong ZL, Chen T, et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today. 2020;35:100943.
CAS
Google Scholar
Chen J, Wang C, Yin Y, Liu R, Meng FX, Wang SS, et al. Upconversion luminescence enhancement and color modulation in Yb3+/Er3+/Ln3+ (Ln = Tm, Ho) tri-doped YF3 microrods. Opt Mater. 2023;140:113839.
CAS
Google Scholar
Auzel F. History of upconversion discovery and its evolution. J Lumines. 2020;223:116900.
CAS
Google Scholar
Yu ZF, He YY, Schomann T, Wu KF, Hao Y, Suidgeest E, et al. Rare-earth-metal (Nd3+, Ce3+ and Gd3+)-doped CaF2: nanoparticles for multimodal imaging in biomedical applications. Pharmaceutics. 2022;14(12):2796.
CAS
Google Scholar
Li RY, Li ZJ, Sun XL, Ji J, Liu L, Gu ZG, et al. Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics. Chem Eng J. 2020;382:122992.
Google Scholar
Wang YX, Feng M, Lin B, Peng XR, Wang Z, Lv RC. MET-targeted NIR II luminescence diagnosis and up-conversion guided photodynamic therapy for triple-negative breast cancer based on a lanthanide nanoprobe. Nanoscale. 2021;13(43):18125–33.
CAS
Google Scholar
Zhang ZC, Yang Y, Zhao MY, Lu LF, Zhang F, Fan Y. Tunable and enhanced NIR-II luminescence from heavily doped rare-earth nanoparticles for in vivo bioimaging. ACS Appl Bio Mater. 2022;5(6):2935–42.
CAS
Google Scholar
Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, et al. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano. 2012;6(9):8280–7.
CAS
Google Scholar
Xu F, Luo W, Abudula A, Wang YY, Sun ZJ. Control and enhancement of upconversion luminescence of NaYF4:Yb,Er nanoparticles with multiplet independent resonance modes in multiplexed metal gratings. J Lumines. 2023;253:119487.
CAS
Google Scholar
Lv RC, Wang YX, Lin B, Peng XR, Liu J, Lü WD, et al. Targeted luminescent probes for precise upconversion/NIR II luminescence diagnosis of lung adenocarcinoma. Anal Chem. 2021;93(11):4984–92.
CAS
Google Scholar
Liang Y, An R, Du PY, Lei PP, Zhang HJ. NIR-activated upconversion nanoparticles/hydrogen-bonded organic framework nanocomposites for NIR-II imaging-guided cancer therapy. Nano Today. 2023;48:101751.
CAS
Google Scholar
Du JY, Yang SS, Qiao YC, Lu HT, Dong HF. Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron. 2021;191:113478.
CAS
Google Scholar
Li ZF, Zhang C, Zhang X, Sui J, Jin L, Lin LS, et al. NIR-II functional materials for photoacoustic theranostics. Bioconjug Chem. 2022;33(1):67–86.
CAS
Google Scholar
Hou H, Chen LM, He HL, Chen LZ, Zhao ZL, Jin YD. Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation. J Mater Chem B. 2015;3(26):5189–96.
CAS
Google Scholar
Alchera E, Monieri M, Maturi M, Locatelli I, Locatelli E, Tortorella S, et al. Early diagnosis of bladder cancer by photoacoustic imaging of tumor-targeted gold nanorods. Photoacoustics. 2022;28:100400.
Google Scholar
He T, Jiang C, He J, Zhang YF, He G, Wu JYZ, et al. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv Mater. 2021;33(13):e2008540.
Google Scholar
Zhang Y, Li Y, Li JY, Mu F, Wang J, Shen C, et al. DNA-templated Ag@Pd nanoclusters for NIR-II photoacoustic imaging-guided photothermal-augmented nanocatalytic therapy. Adv Healthc Mater. 2023;12(22):e2300267.
Google Scholar
Fu QR, Zhu R, Song JB, Yang HH, Chen XY. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2019;31(6):e1805875.
Google Scholar
Gao K, Tu WZ, Yu XJ, Ahmad F, Zhang XN, Wu WJ, et al. W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors. Theranostics. 2019;9(18):5214–26.
CAS
Google Scholar
Zhang XS, Wei JS, Chen JW, Cheng K, Zhang F, Ashraf G, et al. A nanoplatform of hollow Ag2S/Ag nanocomposite shell for photothermal and enhanced sonodynamic therapy mediated by photoacoustic and CT imaging. Chem Eng J. 2022;433(Pt 2): 133196.
CAS
Google Scholar
Wang Z, He L, Che ST, Xing HY, Guan L, Yang Z, et al. AuNCs-LHRHa nano-system for FL/CT dual-mode imaging and photothermal therapy of targeted prostate cancer. J Mater Chem B. 2022;10(27):5182–90.
CAS
Google Scholar
Li L, Zhang LY, Wang TT, Wu XT, Ren H, Wang CG, et al. Facile and scalable synthesis of novel spherical Au nanocluster assemblies@polyacrylic acid/calcium phosphate nanoparticles for dual-modal imaging-guided cancer chemotherapy. Small. 2015;11(26):3162–73.
CAS
Google Scholar
Wu J, Liu J, Lin B, Lv RC, Yuan Y, Tao XF. Met-targeted dual-modal MRI/NIR II imaging for specific recognition of head and neck squamous cell carcinoma. ACS Biomater Sci Eng. 2021;7(4):1640–50.
CAS
Google Scholar
Dong XW, Ye J, Wang YH, Xiong HJ, Jiang H, Lu HB, et al. Ultra-small and metabolizable near-infrared Au/Gd nanoclusters for targeted FL/MRI imaging and cancer theranostics. Biosensors (Basel). 2022;12(8):558.
CAS
Google Scholar
Bi SH, Deng ZM, Jiang Q, Jiang MY, Zeng SJ. A H2S-triggered dual-modal second near-infrared/photoacoustic intelligent nanoprobe for highly specific imaging of colorectal cancer. Anal Chem. 2021;93(39):13212–8.
CAS
Google Scholar
Wang Z, Jia T, Sun QQ, Kuang Y, Liu B, Xu MS, et al. Construction of Bi/phthalocyanine manganese nanocomposite for trimodal imaging directed photodynamic and photothermal therapy mediated by 808 nm light. Biomaterials. 2020;228:119569.
CAS
Google Scholar
Shan XR, Chen Q, Yin XY, Jiang CZ, Li TH, Wei SS, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B. 2020;8(3):426–37.
CAS
Google Scholar
Xue ZL, Yi ZG, Li XL, Li YB, Jiang MY, Liu HR, et al. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials. 2017;115:90–103.
CAS
Google Scholar
Lipengolts AA, Finogenova YA, Skribitsky VA, Shpakova KE, Anaki A, Motiei M, et al. CT and MRI imaging of theranostic bimodal Fe3O4@Au nanoparticles in tumor bearing mice. Int J Mol Sci. 2022;24(1):70.
Google Scholar
Ouyang RZ, Cao PH, Jia PP, Wang H, Zong TY, Dai CY, et al. Bistratal Au@Bi2S3 nanobones for excellent NIR-triggered/multimodal imaging-guided synergistic therapy for liver cancer. Bioact Mater. 2020;6(2):386–403.
Google Scholar
Men XJ, Chen HB, Sun C, Liu YB, Wang RB, Zhang XJ, et al. Thermosensitive polymer dot nanocomposites for trimodal computed tomography/photoacoustic/fluorescence imaging-guided synergistic chemo-photothermal therapy. ACS Appl Mater Interfaces. 2020;12(46):51174–84.
CAS
Google Scholar
Liu H, Wang R, Gao H, Chen L, Li X, Yu X, et al. Nanoprobes for PET/MR imaging. Adv Therap. 2024;7(2):2300232.
CAS
Google Scholar
Hu XM, Tang YF, Hu YX, Lu F, Lu XM, Wang YQ, et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics. 2019;9(14):4168–81.
CAS
Google Scholar
Yamini S, Gunaseelan M, Kumar GA, Singh S, Dannangoda GC, Martirosyan KS, et al. NaGdF4:Yb,Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Mikrochim Acta. 2020;187(6):317.
CAS
Google Scholar
Taheri-Ledari R, Zarei-Shokat S, Qazi FS, Ghafori-Gorab M, Ganjali F, Kashtiaray A, et al. A mesoporous magnetic Fe3O4/BioMOF-13 with a core/shell nanostructure for targeted delivery of doxorubicin to breast cancer cells. ACS Appl Mater Interfaces. 2025;17(12):17703–17.
CAS
Google Scholar
Sykes EA, Chen J, Zheng G, Chan WCW. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696–706.
CAS
Google Scholar
Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 2020;12(4):371.
CAS
Google Scholar
Zhang XY, Wu JR, Williams GR, Yang YB, Niu SW, Qian QQ, et al. Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. J Colloid Interface Sci. 2019;539:433–41.
CAS
Google Scholar
Bulatao BP, Nalinratana N, Jantaratana P, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Lutein-loaded chitosan/alginate-coated Fe3O4 nanoparticles as effective targeted carriers for breast cancer treatment. Int J Biol Macromol. 2023;242(Pt 1):124673.
CAS
Google Scholar
Suk JS, Xu QG, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.
CAS
Google Scholar
Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, et al. Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl Mater Interfaces. 2018;10(4):3282–94.
CAS
Google Scholar
Zhao HX, Li TT, Yao C, Gu Z, Liu CX, Li JH, et al. Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl Mater Interfaces. 2021;13(5):6034–42.
CAS
Google Scholar
Jiang H, Wang Q, Li L, Zeng Q, Li HM, Gong T, et al. Turning the old adjuvant from gel to nanoparticles to amplify CD8+ T cell responses. Adv Sci (Weinh). 2017;5(1):1700426.
Google Scholar
Yu WQ, He XQ, Yang ZH, Yang XT, Xiao W, Liu R, et al. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials. 2019;217:119309.
CAS
Google Scholar
Belyaev IB, Zelepukin I, Tishchenko VK, Petriev VM, Trushina DB, Klimentov SM, et al. Nanoparticles based on MIL-101 metal-organic frameworks as efficient carriers of therapeutic 188Re radionuclide for nuclear medicine. Nanotechnology. 2024;35(7):075103.
CAS
Google Scholar
Abdelfattah A, Aboutaleb AE, Abdel-Aal AM, Abdellatif AH, Tawfeek HM, Abdel-Rahman SI. Design and optimization of PEGylated silver nanoparticles for efficient delivery of doxorubicin to cancer cells. J Drug Deliv Sci Technol. 2022;71:103347.
CAS
Google Scholar
Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym. 2020;248:116735.
CAS
Google Scholar
Wozniak-Budych MJ, Langer K, Peplinska B, Przysiecka L, Jarek M, Jarzebski M, et al. Copper-gold nanoparticles: fabrication, characteristic and application as drug carriers. Mater Chem Phys. 2016;179:242–53.
CAS
Google Scholar
Oladipo AO, Nkambule TTI, Mamba BB, Msagati TM. The stimuli-responsive properties of doxorubicin adsorbed onto bimetallic Au@Pd nanodendrites and its potential application as drug delivery platform. Mater Sci Eng C Mater Biol Appl. 2020;110:110696.
CAS
Google Scholar
Mukherjee S, Kotcherlakota R, Haque S, Bhattacharya D, Kumar JM, Chakravarty S, et al. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Mater Sci Eng C Mater Biol Appl. 2020;108:110375.
CAS
Google Scholar
Alizadeh F, Yaghoobi E, Imanimoghadam M, Ramezani M, Alibolandi M, Abnous K, et al. Targeted delivery of epirubicin to cancerous cell using copper sulphide nanoparticle coated with polyarginine and 5TR1 aptamer. J Drug Target. 2023;31(9):986–97.
CAS
Google Scholar
Li Q, Sun LH, Hou MM, Chen QB, Yang RH, Zhang L, et al. Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer. ACS Appl Mater Interfaces. 2019;11(1):417–29.
CAS
Google Scholar
Zhu XY, Gu JL, Wang Y, Li B, Li YS, Zhao WR, et al. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun (Camb). 2014;50(63):8779–82.
CAS
Google Scholar
Abbasi E, Milani M, Aval SF, Kouhi M, Akbarzadeh A, Nasrabadi HT, et al. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2016;42(2):173–80.
CAS
Google Scholar
Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci. 2018;19(8):2269.
Google Scholar
Thapa RK, Kim JH, Jeong JN, Shin BS, Choi HG, Yong CS, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf B Biointerfaces. 2017;153:95–103.
CAS
Google Scholar
Hongsa N, Thinbanmai T, Luesakul U, Sansanaphongpricha K, Muangsin N. A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluo-rouracil delivery: synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym. 2022;277:118858.
CAS
Google Scholar
Li YT, Jin J, Wang DW, Lv JW, Hou K, Liu YL, et al. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018;11(6):3294–305.
CAS
Google Scholar
Zhou ZX, Liu XR, Zhu DC, Wang Y, Zhang Z, Zhou XF, et al. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev. 2017;115:115–54.
CAS
Google Scholar
Lin G, Zhang Y, Zhang L, Wang JQ, Tian Y, Cai W, et al. Metal-organic frameworks nanoswitch: toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020;13(1):238–45.
CAS
Google Scholar
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, et al. Tailoring iron oxide nanoparticles for efficient cellular internalization and endosomal escape. Nanomaterials (Basel). 2020;10(9):1816.
CAS
Google Scholar
Zhao M, Li J, Chen DW, Hu HY. A valid bisphosphonate modified calcium phosphate-based gene delivery system: increased stability and enhanced transfection efficiency in vitro and in vivo. Pharmaceutics. 2019;11(9):468.
CAS
Google Scholar
Song WT, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials. 2017;148:16–30.
CAS
Google Scholar
Dey A, Manna S, Kumar S, Chattopadhyay S, Saha B, Roy S. Immunostimulatory effect of chitosan conjugated green copper oxide nanoparticles in tumor immunotherapy. Cytokine. 2020;127:154958.
CAS
Google Scholar
Chen SB, Li DD, Du XJ, He XY, Huang MW, Wang Y, et al. Carrier-free nanoassembly of doxorubicin prodrug and siRNA for combinationally inducing immunogenic cell death and reversing immunosuppression. Nano Today. 2020;35:100924.
CAS
Google Scholar
An G, Zheng H, Guo L, Huang J, Yang C, Bai Z, et al. A metal-organic framework (MOF) built on surface-modified Cu nanoparticles eliminates tumors via multiple cascading synergistic therapeutic effects. J Colloid Interface Sci. 2024;662:298–312.
CAS
Google Scholar
Hou YY, Wang Y, Tang Y, Zhou ZX, Tan L, Gong T, et al. Co-delivery of antigen and dual adjuvants by aluminum hydroxide nanoparticles for enhanced immune responses. J Control Release. 2020;326:120–30.
CAS
Google Scholar
Liu Y, Niu R, Zhao H, Wang YH, Song SY, Zhang HJ, et al. Single-site nanozymes with a highly conjugated coordination structure for antitumor immunotherapy via cuproptosis and cascade-enhanced T lymphocyte activity. J Am Chem Soc. 2024;146(6):3675–88.
CAS
Google Scholar
Chiang CS, Lin YJ, Lee R, Lai YH, Cheng HW, Hsieh CH, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol. 2018;13(8):746–54.
CAS
Google Scholar
Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905.
CAS
Google Scholar
Ouyang B, Poon W, Zhang YN, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour delivery. Nat Mater. 2020;19(12):1362–71.
CAS
Google Scholar
Chen QR, Yuan L, Chou WC, Cheng YH, He CL, Monteiro-Riviere NA, et al. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano. 2023;17(20):19810–31.
CAS
Google Scholar
Lomax ME, Folkes LK, O’neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 2013;25(10):578–85.
CAS
Google Scholar
Gong LY, Zhang YJ, Liu CC, Zhang MZ, Han SX. Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2021;16:1083–102.
Google Scholar
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol. 2020;65(21):21RM02.
CAS
Google Scholar
Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR1.
Google Scholar
Hua Y, Huang JH, Shao ZH, Luo XM, Wang ZY, Liu JQ, et al. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv Mater. 2022;34(31):e2203734.
Google Scholar
Guo XX, Guo ZH, Lu JS, Xie WS, Zhong QZ, Sun XD, et al. All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. Nanoscale. 2021;13(34):14525–37.
CAS
Google Scholar
Ma NN, Wu FG, Zhang XD, Jiang YW, Jia HR, Wang HY, et al. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl Mater Interfaces. 2017;9(15):13037–48.
CAS
Google Scholar
Dou Y, Guo YY, Li XD, Li X, Wang S, Wang L, et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano. 2016;10(2):2536–48.
CAS
Google Scholar
Liu PD, Jin HZ, Guo ZR, Ma J, Zhao J, Li DD, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomedicine. 2016;11:5003–14.
CAS
Google Scholar
Afifi MM, El-Gebaly RH, Abdelrahman IY, Rageh MM. Efficacy of iron-silver bimetallic nanoparticles to enhance radiotherapy. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(12):3647–57.
CAS
Google Scholar
Fu WH, Zhang X, Mei LQ, Zhou RY, Yin WY, Wang Q, et al. Stimuli-responsive small-on-large nanoradiosensitizer for enhanced tumor penetration and radiotherapy sensitization. ACS Nano. 2020;14(8):10001–17.
CAS
Google Scholar
Gupta A, Sood A, Bhardwaj D, Shrimali N, Singhmar R, Chaturvedi S, et al. Functionalized chitosan decorated hafnium oxide@gold core-shell nanoparticles for multimodal cancer therapy. Adv Therap. 2024;7(2):2300165.
CAS
Google Scholar
Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Sunyach MP, Saada E, et al. A phase II/III trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall. Ann Oncol. 2018;29:753.
Google Scholar
Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomedicine. 2014;10(8):1751–5.
CAS
Google Scholar
Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics. 2020;10(3):1319–31.
CAS
Google Scholar
Verry C, Dufort S, Villa J, Gavard M, Iriart C, Grand S, et al. Theranostic AGuIX nanoparticles as radiosensitizer: a phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol. 2021;160:159–65.
CAS
Google Scholar
Du Z, Wang X, Zhang X, Gu ZJ, Fu XY, Gan SJ, et al. X-ray-triggered carbon monoxide and manganese dioxide generation based on scintillating nanoparticles for cascade cancer radiosensitization. Angew Chem Int Ed Engl. 2023;62(23):e202302525.
CAS
Google Scholar
Chen JX, Gong MF, Fan YL, Feng J, Han LL, Xin HL, et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano. 2022;16(1):910–20.
CAS
Google Scholar
Zhao SB, Luo YQ, Chang Z, Liu CC, Li T, Gan L, et al. BSA-coated gold nanorods for NIR-II photothermal therapy. Nanoscale Res Lett. 2021;16(1):170.
CAS
Google Scholar
Xie BB, Zhao HC, Shui MJ, Ding YF, Sun C, Wang ZY, et al. Spermine-responsive intracellular self-aggregation of gold nanocages for enhanced chemotherapy and photothermal therapy of breast cancer. Small. 2022;18(30):e2201971.
Google Scholar
Sun L, Bai HF, Jiang HJ, Zhang P, Li J, Qiao WD, et al. MoS2/LaF3 for enhanced photothermal therapy performance of poorly-differentiated hepatoma. Colloids Surf B Biointerfaces. 2022;214:112462.
CAS
Google Scholar
Gao Q, He X, He L, Lin J, Wang L, Xie Y, et al. Hollow Cu2-xSe-based nanocatalysts for combined photothermal and chemodynamic therapy in the second near-infrared window. Nanoscale. 2023;15(44):17987–95.
CAS
Google Scholar
Li XQ, Cao Y, Xu B, Zhao Y, Zhang TQ, Wang YH, et al. A bimetallic nanozyme with cascade effect for synergistic therapy of cancer. ChemMedChem. 2022;17(8):e202100663.
CAS
Google Scholar
Xiong JS, Bian QH, Lei SJ, Deng YT, Zhao KH, Sun SQ, et al. Bi19S27I3 nanorods: a new candidate for photothermal therapy in the first and second biological near-infrared windows. Nanoscale. 2021;13(10):5369–82.
CAS
Google Scholar
Geng P, Yu N, Macharia DK, Meng RR, Qiu P, Tao C, et al. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy. Chem Eng J. 2022;441:135964.
CAS
Google Scholar
Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano. 2015;9(1):6–11.
CAS
Google Scholar
Su Z, Yang Z, Xie L, Dewitt JP, Chen Y. Cancer therapy in the necroptosis era. Cell Death Differ. 2016;23(5):748–56.
CAS
Google Scholar
Zhang YJ, Zhan XL, Xiong J, Peng SS, Huang W, Joshi R, et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep. 2018;8(1):8720.
Google Scholar
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, et al. Photodynamic therapy: mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.
Google Scholar
Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, et al. Metal-based nanoparticles in cancer therapy: exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm. 2024;649:123622.
CAS
Google Scholar
Yaraki MT, Liu B, Tan YN. Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nanomicro Lett. 2022;14(1):123.
CAS
Google Scholar
Sun JY, Kormakov S, Liu Y, Huang Y, Wu DM, Yang ZG. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules. 2018;23(7):1704.
Google Scholar
Yin JC, Wu HN, Wang X, Tian L, Yang RL, Liu LZ, et al. Plasmonic nano-dumbbells for enhanced photothermal and photodynamic synergistic damage of cancer cells. Appl Phys Lett. 2020;116(16):163702.
CAS
Google Scholar
Crous A, Abrahamse H. Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci. 2020;21(11):3742.
CAS
Google Scholar
Li ZW, Wang C, Cheng L, Gong H, Yin SN, Gong QF, et al. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 2013;34(36):9160–70.
CAS
Google Scholar
Yu JT, Li Q, Wei ZX, Fan GL, Wan FY, Tian LL. Ultra-stable MOF@MOF nanoplatform for photodynamic therapy sensitized by relieved hypoxia due to mitochondrial respiration inhibition. Acta Biomater. 2023;170:330–43.
CAS
Google Scholar
Mohseni H, Imanparast A, Salarabadi SS, Sazgarnia A. In vitro evaluation of the intensifying photodynamic effect due to the presence of plasmonic hollow gold nanoshells loaded with methylene blue on breast and melanoma cancer cells. Photodiagnosis Photodyn Ther. 2022;40:103065.
CAS
Google Scholar
Yang YM, Hu Y, Du H, Ren E, Wang HJ. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Int J Nanomedicine. 2018;13:2065–78.
CAS
Google Scholar
Buchner M, Calavia PG, Muhr V, Kröninger A, Baeumner AJ, Hirsch T, et al. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells. Photochem Photobiol Sci. 2019;18(1):98–109.
CAS
Google Scholar
Zhang ZY, Ni DL, Wang F, Yin X, Goel S, German LN, et al. In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Res. 2020;13(12):3217–23.
CAS
Google Scholar
Yu Y, Geng JL, Ong EYX, Chellappan V, Tan YN. Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv Healthc Mater. 2016;5(19):2528–35.
CAS
Google Scholar
Sargazi S, Simge ER, Gelen SS, Rahdar A, Bilal M, Arshad R, et al. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: an updated and comprehensive review. J Drug Deliv Sci Technol. 2022;75:103605.
CAS
Google Scholar
Fatima H, Jin ZY, Shao ZP, Chen XJ. Recent advances in ZnO-based photosensitizers: synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci. 2022;621:440–63.
CAS
Google Scholar
Pan QL, Li MM, Xiao MC, He YL, Sun GY, Xue T, et al. Semiconductor quantum dots (CdX, X=S, Te, Se) modify titanium dioxide nanoparticles for photodynamic inactivation of leukemia HL60 cancer cells. J Nanomater. 2021;2021:4125350.
Google Scholar
Yang D, Gulzar A, Yang GX, Gai SL, He F, Dai YL, et al. Au nanoclusters sensitized black TiO2-x nanotubes for enhanced photodynamic therapy driven by near-infrared light. Small. 2017;13(48):1703007.
Google Scholar
Pan M, Hu DR, Yuan LP, Yu Y, Li YC, Qian ZY. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B. 2023;13(7):2926–54.
CAS
Google Scholar
Son S, Kim JH, Wang XW, Zhang CL, Yoon SA, Shin J, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020;49(11):3244–61.
CAS
Google Scholar
Yang FF, Dong J, Li ZF, Wang ZH. Metal-organic frameworks (MOF)-assisted sonodynamic therapy in anticancer applications. ACS Nano. 2023;17(5):4102–33.
CAS
Google Scholar
Wang H, Guo JX, Lin W, Fu Z, Ji XR, Yu B, et al. Open-shell nanosensitizers for glutathione responsive cancer sonodynamic therapy. Adv Mater. 2022;34(15):e2110283.
Google Scholar
Das M, Pandey V, Jajoria K, Bhatia D, Gupta I, Shekhar H. Glycosylated porphyrin derivatives for sonodynamic therapy: ROS generation and cytotoxicity studies in breast cancer cells. ACS Omega. 2023;9(1):1196–205.
Google Scholar
Liang S, Deng X, Xu G, Xiao X, Wang M, Guo X, et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv Funct Mater. 2020;30(13):1908598.
CAS
Google Scholar
Liao HQ, Chen MY, Liao ZP, Luo Y, Chen SJ, Wang L, et al. MnO2-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer. Biomater Sci. 2025;13(10):2767–82.
CAS
Google Scholar
Gonçalves KD, Vieira DP, Levy D, Bydlowski SP, Courrol LC. Uptake of silver, gold, and hybrids silver-iron, gold-iron and silver-gold aminolevulinic acid nanoparticles by MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther. 2020;32:102080.
Google Scholar
Dong ZL, Feng LZ, Hao Y, Li QG, Chen MC, Yang ZJ, et al. Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem. 2020;6(6):1391–407.
CAS
Google Scholar
Zhao YY, Wen M, Yu N, Tao C, Ren Q, Qiu P, et al. Design and synthesis of cancer-cell-membrane-camouflaged hemoporfin-Cu9S8 nanoagents for homotypic tumor-targeted photothermal-sonodynamic therapy. J Colloid Interface Sci. 2023;637:225–36.
CAS
Google Scholar
Sazgarnia A, Shanei A, Eshghi H, Hassanzadeh-Khayyat M, Esmaily H, Shanei MM. Detection of sonoluminescence signals in a gel phantom in the presence of protoporphyrin IX conjugated to gold nanoparticles. Ultrasonics. 2013;53(1):29–35.
CAS
Google Scholar
Sazgarnia A, Shanei A, Meibodi NT, Eshghi H, Nassirli H. A novel nanosonosensitizer for sonodynamic therapy in vivo study on a colon tumor model. J Ultrasound Med. 2011;30(10):1321–9.
Google Scholar
Deng XY, Guo Y, Zhang XD, Wu W, Wu YL, Jing DD, et al. Film-facilitated formation of ferrocenecarboxylic acid-embedded metal-organic framework nanoparticles for sonodynamic osteosarcoma treatment. Mater Today Chem. 2022;24:100842.
CAS
Google Scholar
Zhang C, Xin L, Li J, Cao J, Sun Y, Wang X, et al. Metal-organic framework (MOF)-based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy. Adv Healthc Mater. 2022;11(2):e2101946.
Google Scholar
Zhao YM, Liu JH, He MT, Dong Q, Zhang L, Xu ZG, et al. Platinum-titania schottky junction as nanosonosensitizer, glucose scavenger, and tumor microenvironment-modulator for promoted cancer treatment. ACS Nano. 2022;16(8):12118–33.
CAS
Google Scholar
Perota G, Zahraie N, Vais RD, Zare MH, Sattarahmady N. Au/TiO2 nanocomposite as a triple-sensitizer for 808 and 650 nm phototherapy and sonotherapy: synergistic therapy of melanoma cancer in vitro. J Drug Deliv Sci Technol. 2022;76:103787.
CAS
Google Scholar
Cao Y, Wu TT, Dai WH, Dong HF, Zhang XJ. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem Mat. 2019;31(21):9105–14.
CAS
Google Scholar
Liu Y, Wang Y, Zhen WY, Wang YH, Zhang ST, Zhao Y, et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials. 2020;251:120075.
CAS
Google Scholar
Guan X, Yin HH, Xu XH, Xu G, Zhang Y, Zhou BG, et al. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs’ separation. Adv Funct Mater. 2020;30(27):2000326.
CAS
Google Scholar
Wang F, Wang BY, You W, Chen G, You YZ. Integrating Au and ZnO nanoparticles onto graphene nanosheet for enhanced sonodynamic therapy. Nano Res. 2022;15(10):9223–33.
CAS
Google Scholar
Dai C, Zhang SJ, Liu Z, Wu R, Chen Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano. 2017;11(9):9467–80.
CAS
Google Scholar
Liang S, Xiao X, Bai LX, Liu B, Yuan M, Ma PA, et al. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Adv Mater. 2021;33(18):e2100333.
Google Scholar
Pan XT, Bai LX, Wang H, Wu QY, Wang HY, Liu S, et al. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater. 2018;30(23):e1800180.
Google Scholar
Ma AQ, Chen HQ, Cui YH, Luo ZY, Liang RJ, Wu ZH, et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small. 2019;15(5):e1804028.
Google Scholar
Yang BW, Chen Y, Shi JL. Nanocatalytic medicine. Adv Mater. 2019;31(39):e1901778.
Google Scholar
Zhang C, Bu WB, Ni DL, Zhang SJ, Li Q, Yao ZW, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem Int Ed Engl. 2016;55(6):2101–6.
CAS
Google Scholar
Guan SQ, Liu XJ, Li CL, Wang XY, Cao DM, Wang JX, et al. Intracellular mutual amplification of oxidative stress and inhibition multidrug resistance for enhanced sonodynamic/chemodynamic/chemo therapy. Small. 2022;18(13):e2107160.
Google Scholar
Jia CY, Guo YX, Wu FG. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small. 2022;18(6):e2103868.
Google Scholar
Liu Y, Zhen WY, Wang YH, Liu JH, Jin LH, Zhang TQ, et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew Chem Int Ed Engl. 2019;58(8):2407–12.
CAS
Google Scholar
Liu CZ, Chen YX, Zhao J, Wang Y, Shao YL, Gu ZN, et al. Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy. Angew Chem Int Ed Engl. 2021;60(26):14324–8.
CAS
Google Scholar
Liu Y, Wu JD, Jin YH, Zhen WY, Wang YH, Liu JH, et al. Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Adv Funct Mater. 2019;29(50):1904678.
CAS
Google Scholar
Duan JL, Liao T, Xu XY, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO2 nanoparticles with a “dynamic protection” property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci. 2023;634:836–51.
CAS
Google Scholar
Sun LN, Cao Y, Li WJ, Wang L, Ding P, Lu ZZ, et al. Perovskite-type manganese vanadate sonosensitizers with biodegradability for enhanced sonodynamic therapy of cancer. Small. 2023;19(27):e2300101.
Google Scholar
Zhu HJ, Huang SY, Ding MB, Li ZB, Li JC, Wang SH, et al. Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. ACS Appl Mater Interfaces. 2022;14(22):25183–96.
CAS
Google Scholar
Li DY, Ha EN, Zhang JG, Wang LY, Hu JQ. A synergistic chemodynamic-photodynamic-photothermal therapy platform based on biodegradable Ce-doped MoOx nanoparticles. Nanoscale. 2022;14(39):14471–81.
CAS
Google Scholar
Liu QW, Zhang A, Wang RH, Zhang Q, Cui DX. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nanomicro Lett. 2021;13(1):154.
CAS
Google Scholar
Dong SM, Dong YS, Jia T, Liu SK, Liu J, Yang D, et al. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv Mater. 2020;32(42):e2002439.
Google Scholar
Pan MM, Li PZ, Yu YP, Jiang M, Yang XL, Zhang P, et al. Bimetallic ions functionalized metal-organic-framework nanozyme for tumor microenvironment regulating and enhanced photodynamic therapy for hypoxic tumor. Adv Healthc Mater. 2023;12(26):e2300821.
Google Scholar
Feng J, Kong F, Yue WS, Yu H, He ZL, Zhai YN, et al. Covalent organic framework-based nanozyme for cascade-amplified synergistic cancer therapy. Sci China Mater. 2023;66(10):4079–89.
CAS
Google Scholar
Zhu YL, Wang Z, Zhao RX, Zhou YH, Feng LL, Gai SL, et al. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano. 2022;16(2):3105–18.
CAS
Google Scholar
Zhang JG, Ha E, Li DY, He SQ, Wang LY, Kuang SL, et al. Dual enzyme-like Co-FeSe2 nanoflowers with GSH degradation capability for NIR II-enhanced catalytic tumor therapy. J Mater Chem B. 2023;11(19):4274–86.
CAS
Google Scholar
Wan X, Zhang H, Yan Q, Hu H, Pan W, Chai Y, et al. Three-dimensional covalent organic frameworks as enzyme nanoprotector: preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Mater Today Nano. 2022;19:100236.
CAS
Google Scholar
Dong SM, Dong YS, Liu B, Liu J, Liu SK, Zhao ZY, et al. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy. Adv Mater. 2022;34(7):e2107054.
Google Scholar
Liu J, Dong SM, Gai SL, Dong YS, Liu B, Zhao ZY, et al. Design and mechanism insight of monodispersed AuCuPt alloy nanozyme with antitumor activity. ACS Nano. 2023;17(20):20402–23.
CAS
Google Scholar
Wang ZQ, Li GL, Gao Y, Yu Y, Yang P, Li B, et al. Trienzyme-like iron phosphates-based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects. Chem Eng J. 2021;404:125574.
CAS
Google Scholar
Liu Y, Zhao H, Zhao YL. Designing efficient single metal atom biocatalysts at the atomic structure level. Angew Chem Int Ed Engl. 2024;63(13):e202315933.
CAS
Google Scholar
Zhang SL, Ao X, Huang J, Wei B, Zhai YL, Zhai D, et al. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021;21(22):9691–8.
CAS
Google Scholar
Liu Y, Wang B, Zhu JJ, Xu XN, Zhou B, Yang Y. Single-atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv Mater. 2023;35(9):e2208512.
Google Scholar
Liu Y, Niu R, Deng RP, Wang YH, Song SY, Zhang HJ. Multi-enzyme co-expressed nanomedicine for anti-metastasis tumor therapy by up-regulating cellular oxidative stress and depleting cholesterol. Adv Mater. 2024;36(2):e2307752.
Google Scholar
Yu SP, Canzoniero LMT, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol. 2001;13(4):405–11.
CAS
Google Scholar
Okada Y. Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem Biophys. 2004;41(2):233–58.
Google Scholar
Jiang W, Yin L, Chen HM, Paschall AV, Zhang LY, Fu WY, et al. NaCl nanoparticles as a cancer therapeutic. Adv Mater. 2019;31(46):e1904058.
Google Scholar
Ding BB, Sheng JY, Zheng P, Li CX, Li D, Cheng ZY, et al. Biodegradable upconversion nanoparticles induce pyroptosis for cancer immunotherapy. Nano Lett. 2021;21(19):8281–9.
CAS
Google Scholar
Liu Y, Zhen WY, Wang YH, Song SY, Zhang HJ. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J Am Chem Soc. 2020;142(52):21751–7.
CAS
Google Scholar
Pardo LA, Stühmer W. The roles of K+ channels in cancer. Nat Rev Cancer. 2014;14(1):39–48.
CAS
Google Scholar
Zhang M, Shen B, Song RX, Wang H, Lv B, Meng XF, et al. Radiation-assisted metal ion interference tumor therapy by barium peroxide-based nanoparticles. Mater Horizons. 2019;6(5):1034–40.
CAS
Google Scholar
Wu Y, Huang P, Dong XP. Lysosomal calcium channels in autophagy and cancer. Cancers (Basel). 2021;13(6):1299.
CAS
Google Scholar
Choi S, Cui CC, Luo YH, Kim SH, Ko JK, Huo XF, et al. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J. 2018;32(1):404–16.
CAS
Google Scholar
Guo DD, Du YX, Wu QX, Jiang WJ, Bi HS. Disrupted calcium homeostasis is involved in elevated zinc ion-induced photoreceptor cell death. Arch Biochem Biophys. 2014;560:44–51.
CAS
Google Scholar
Ollig J, Kloubert V, Taylor KM, Rink L. B cell activation and proliferation increase intracellular zinc levels. J Nutr Biochem. 2019;64:72–9.
CAS
Google Scholar
Zhang M, Song RX, Liu YY, Yi ZG, Meng XF, Zhang JW, et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem. 2019;5(8):2171–82.
CAS
Google Scholar
Johnstone TC, Suntharalingam K, Lippard SJ. Third row transition metals for the treatment of cancer. Philos Trans A Math Phys Eng Sci. 2015;373(2037):20140185.
Google Scholar
Zheng SZ, Li GT, Shi JB, Liu XY, Li M, He ZG, et al. Emerging platinum(IV) prodrug nanotherapeutics: a new epoch for platinum-based cancer therapy. J Control Release. 2023;361:819–46.
CAS
Google Scholar
Vigna V, Scoditti S, Spinello A, Mazzone G, Sicilia E. Anticancer activity, reduction mechanism and G-quadruplex DNA binding of a redox-activated platinum(IV)-salphen complex. Int J Mol Sci. 2022;23(24):15579.
CAS
Google Scholar
Luo KJ, Guo WX, Yu YT, Xu SM, Zhou M, Xiang KQ, et al. Reduction-sensitive platinum (IV)-prodrug nano-sensitizer with an ultra-high drug loading for efficient chemo-radiotherapy of Pt-resistant cervical cancer in vivo. J Control Release. 2020;326:25–37.
CAS
Google Scholar
Bi HT, Dai YL, Yang PP, Xu JT, Yang D, Gai SL, et al. Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2-Pt@Au25 nanosheets. Chem Eng J. 2019;356:543–53.
CAS
Google Scholar
Zhou FY, Feng B, Yu HJ, Wang DG, Wang TT, Ma YT, et al. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater. 2019;31(14):e1805888.
Google Scholar
Galluzzi L, Kepp O, Hett E, Kroemer G, Marincola FM. Immunogenic cell death in cancer: concept and therapeutic implications. J Transl Med. 2023;21(1):162.
CAS
Google Scholar
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75.
CAS
Google Scholar
Sen S, Won M, Levine MS, Noh Y, Sedgwick AC, Kim JS, et al. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev. 2022;51(4):1212–33.
CAS
Google Scholar
Liu Y, Wang YH, Song SY, Zhang HJ. Cascade-responsive nanobomb with domino effect for anti-tumor synergistic therapies. Natl Sci Rev. 2022;9(3):nwab139.
CAS
Google Scholar
Niu R, Liu Y, Xu B, Deng RP, Zhou SJ, Cao Y, et al. Programmed targeting pyruvate metabolism therapy amplified single-atom nanozyme-activated pyroptosis for immunotherapy. Adv Mater. 2024;36(24):e2312124.
Google Scholar
Liu Y, Niu R, Deng RP, Song SY, Wang YH, Zhang HJ. Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J Am Chem Soc. 2023;145(16):8965–78.
CAS
Google Scholar
Li J, Wang SJ, Lin XY, Cao YB, Cai ZX, Wang J, et al. Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nanomicro Lett. 2022;14(1):57.
CAS
Google Scholar
Tan X, Huang JZ, Wang YQ, He SS, Jia L, Zhu YH, et al. Transformable nanosensitizer with tumor microenvironment-activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew Chem Int Ed Engl. 2021;60(25):14051–9.
CAS
Google Scholar
Ma YC, Zhang YX, Li XQ, Zhao YY, Li M, Jiang W, et al. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano. 2019;13(10):11967–80.
CAS
Google Scholar
Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. Hyperthermia using nanoparticles – promises and pitfalls. Int J Hyperthermia. 2016;32(1):76–88.
CAS
Google Scholar
Pan J, Hu P, Guo YD, Hao JN, Ni DL, Xu YY, et al. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano. 2020;14(1):1033–44.
CAS
Google Scholar
Oleszycka E, Lavelle EC. Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol. 2014;28:1–5.
CAS
Google Scholar
Lv MZ, Chen MX, Zhang R, Zhang W, Wang CG, Zhang Y, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30(11):966–79.
CAS
Google Scholar
Zhao Z, Ma ZX, Wang B, Guan YK, Su XD, Jiang ZF. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP. Cell Rep. 2020;32(7):108053.
CAS
Google Scholar
Hou L, Tian CY, Yan YS, Zhang LW, Zhang HJ, Zhang ZZ. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano. 2020;14(4):3927–40.
CAS
Google Scholar
Sun XQ, Zhang Y, Li JQ, Park KS, Han K, Zhou XW, et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16(11):1260–70.
CAS
Google Scholar
Du MJ, Chen ZJJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704–9.
CAS
Google Scholar
Zhang LX, Zhao J, Hu X, Wang CH, Jia YB, Zhu CJ, et al. A peritumorally injected immunomodulating adjuvant elicits robust and safe metalloimmunotherapy against solid tumors. Adv Mater. 2022;34(41):e2206915.
Google Scholar
Chaigne-Delalande B, Li FY, O’connor GM, Lukacs MJ, Jiang P, Zheng LX, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91.
CAS
Google Scholar
Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475(7357):471–6.
CAS
Google Scholar
Kang Y, Xu LL, Dong JR, Huang YZ, Yuan X, Li RY, et al. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev. 2023;481:215050.
CAS
Google Scholar
Tan HZ, Mao KR, Cong XX, Xin YB, Liu FQ, Wang JL, et al. In vivo immune adjuvant effects of CaCO3 nanoparticles through intracellular Ca2+ concentration regulation. ACS Appl Mater Interfaces. 2023;15(33):39157–66.
CAS
Google Scholar
Liu YN, Wei CF, Lin AG, Pan JL, Chen X, Zhu XF, et al. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer. Colloids Surf B Biointerfaces. 2020;189:110820.
CAS
Google Scholar
Qiang SF, Hu XC, Li RH, Wu WJ, Fang K, Li H, et al. CuS nanoparticles-loaded and cisplatin prodrug conjugated Fe(III)-MOFs for MRI-guided combination of chemotherapy and NIR-II photothermal therapy. ACS Appl Mater Interfaces. 2022;14(32):36503–14.
CAS
Google Scholar
Sun HP, Su JH, Meng QS, Yin Q, Chen LL, Gu WW, et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv Funct Mater. 2017;27(3):1604300.
Google Scholar
Wu R, Wang HZ, Hai L, Wang TZ, Hou M, He DG, et al. A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chin Chem Lett. 2020;31(1):189–92.
CAS
Google Scholar
Zhang ST, Jin LH, Liu JH, Liu Y, Zhang TQ, Zhao Y, et al. Boosting chemodynamic therapy by the synergistic effect of co-catalyze and photothermal effect triggered by the second near-infrared light. Nanomicro Lett. 2020;12(1):180.
Google Scholar
Yang GB, Wang DD, Phua SZF, Bindra AK, Qian C, Zhang R, et al. Albumin-based therapeutics capable of glutathione consumption and hydrogen peroxide generation for synergetic chemodynamic and chemotherapy of cancer. ACS Nano. 2022;16(2):2319–29.
CAS
Google Scholar
Chang YZ, Huang JR, Shi SJ, Xu LG, Lin H, Chen TF. Precise engineering of a Se/Te nanochaperone for reinvigorating cancer radio-immunotherapy. Adv Mater. 2023;35(36):e2212178.
Google Scholar
Wang DY, Lin SB, Li TW, Yang XH, Zhong X, Chen Q, et al. Cancer cell membrane-coated siRNA-decorated Au/MnO2 nanosensitizers for synergistically enhanced radio-immunotherapy of breast cancer. Mater Today Bio. 2024;29:101275.
CAS
Google Scholar
Liu Y, Zhen WY, Jin LH, Zhang ST, Sun GY, Zhang TQ, et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano. 2018;12(5):4886–93.
CAS
Google Scholar
Meng NQ, Xu PJ, Wen CC, Liu HH, Gao CJ, Shen XC, et al. Near-infrared-II-activatable sulfur-deficient plasmonic Bi2S3-x-Au heterostructures for photoacoustic imaging-guided ultrasound enhanced high performance phototherapy. J Colloid Interface Sci. 2023;644:437–53.
CAS
Google Scholar
Mo XW, Phan NM, Nguyen TL, Kim J. H2O2 self-supplying CaO2 nanoplatform induces Ca2+ overload combined with chemodynamic therapy to enhance cancer immunotherapy. ACS Appl Mater Interfaces. 2024;16(43):58337–45.
CAS
Google Scholar
Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24.
Google Scholar
Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–49.
CAS
Google Scholar
Rasmussen K, Bleeker EJ, Baker J, Bouillard J, Fransman W, Kuhlbusch TJ, et al. A roadmap to strengthen standardisation efforts in risk governance of nanotechnology. NanoImpact. 2023;32:100483.
CAS
Google Scholar