Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).
Google Scholar
Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2012).
Google Scholar
Marand, A. P., Eveland, A. L., Kaufmann, K. & Springer, N. M. cis-Regulatory elements in plant development, adaptation, and evolution. Annu. Rev. Plant Biol. 74, 111–137 (2023).
Google Scholar
Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18, 1–24 (2017).
Google Scholar
Maher, K. A. et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell 30, 15–36 (2018).
Google Scholar
Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019).
Google Scholar
Reynoso, M. A. et al. Evolutionary flexibility in flooding response circuitry in angiosperms. Science 365, 1291–1295 (2019).
Google Scholar
Kajala, K. et al. Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184, 3333–3348. e3319 (2021).
Google Scholar
Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants 5, 1237–1249 (2019).
Google Scholar
Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324. e1318 (2018).
Google Scholar
Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).
Google Scholar
Lu, Z. et al. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell 186, 4345–4364. e4324 (2023).
Google Scholar
Javelle, M., Vernoud, V., Rogowsky, P. M. & Ingram, G. C. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 189, 17–39 (2011).
Google Scholar
Kadioglu, A., Terzi, R., Saruhan, N. & Saglam, A. Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci. 182, 42–48 (2012).
Google Scholar
Xu, Y. et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta 239, 803–816 (2014).
Google Scholar
Dorrity, M. W. et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12, 3334 (2021).
Google Scholar
Farmer, A., Thibivilliers, S., Ryu, K. H., Schiefelbein, J. & Libault, M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14, 372–383 (2021).
Google Scholar
Tu, X., Marand, A. P., Schmitz, R. J. & Zhong, S. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells. Plant Commun. 3, 100308 (2022).
Google Scholar
Nobori, T. et al. A rare PRIMER cell state in plant immunity. Nature 638, 197–205 (2025).
Google Scholar
Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055. e3021 (2021).
Google Scholar
Feng, D. et al. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips. BMC Biol. 20, 274 (2022).
Google Scholar
Zhang, L. et al. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biol. 24, 65 (2023).
Google Scholar
Swift, J. Exaptation of ancestral cell-identity networks enables C4 photosynthesis. Nature 636, 143–150 (2024).
Google Scholar
Zhang, X. et al. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 188, 550–567. e519 (2025).
Google Scholar
Mendieta, J. P. et al. Investigating the cis-regulatory basis of C3 and C4 photosynthesis in grasses at single-cell resolution. Proc. Natl Acad. Sci. USA 121, e2402781121 (2024).
Google Scholar
Wing, R. A., Purugganan, M. D. & Zhang, Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505–517 (2018).
Google Scholar
Dong, Q. et al. Genome‐wide Hi‐C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94, 1141–1156 (2018).
Google Scholar
Wei, X. et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243–253 (2021).
Google Scholar
Yang, Y. et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat. Commun. 10, 1949 (2019).
Google Scholar
Zemach, A. et al. Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl Acad. Sci. USA 107, 18729–18734 (2010).
Google Scholar
Xu, Q. et al. DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biol. 23, 77 (2022).
Google Scholar
Ohashi-Ito, K. & Fukuda, H. HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol. 44, 1350–1358 (2003).
Google Scholar
Wu, R. et al. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23, 3392–3411 (2011).
Google Scholar
Zhong, R., Richardson, E. A. & Ye, Z.-H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19, 2776–2792 (2007).
Google Scholar
Wang, Z. et al. Salicylic acid promotes quiescent center cell division through ROS accumulation and down‐regulation of PLT1, PLT2, and WOX5. J. Integr. Plant Biol. 63, 583–596 (2021).
Google Scholar
Gontarek, B. C., Neelakandan, A. K., Wu, H. & Becraft, P. W. NKD transcription factors are central regulators of maize endosperm development. Plant Cell 28, 2916–2936 (2016).
Google Scholar
Sun, X. et al. Activation of secondary cell wall biosynthesis by miR319‐targeted TCP 4 transcription factor. Plant Biotechnol. J. 15, 1284–1294 (2017).
Google Scholar
Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y. & Matsuoka, M. Isolation and characterization of a rice WUSCHEL‐type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J. 35, 429–441 (2003).
Google Scholar
Cui, H. et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421–425 (2007).
Google Scholar
Zhang, T.-Q., Chen, Y., Liu, Y., Lin, W.-H. & Wang, J.-W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat. Commun. 12, 2053 (2021).
Google Scholar
Ortiz-Ramírez, C. et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).
Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).
Google Scholar
Xiao, J. et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat. Genet. 49, 1546–1552 (2017).
Google Scholar
Schmitz, R. J., Grotewold, E. & Stam, M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell 34, 718–741 (2022).
Google Scholar
Ouyang, W. et al. Haplotype mapping of H3K27me3-associated chromatin interactions defines topological regulation of gene silencing in rice. Cell Rep. 42, 112350 (2023).
Google Scholar
Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Methods Primers 1, 10 (2021).
Google Scholar
Yu, Y., Zhang, H., Long, Y., Shu, Y. & Zhai, J. Plant public RNA‐seq database: a comprehensive online database for expression analysis of~ 45 000 plant public RNA‐seq libraries. Plant Biotechnol. J. 20, 806 (2022).
Google Scholar
Bai, X. et al. Duplication of an upstream silencer of FZP increases grain yield in rice. Nat. Plants 3, 885–893 (2017).
Google Scholar
Wang, Z. et al. AraENCODE: a comprehensive epigenomic database of Arabidopsis thaliana. Mol. Plant 16, 1113–1116 (2023).
Google Scholar
Tonosaki, K. & Kinoshita, T. Possible roles for polycomb repressive complex 2 in cereal endosperm. Front. Plant Sci. 6, 144 (2015).
Google Scholar
Tan, F.-Q. et al. A coiled-coil protein associates Polycomb Repressive Complex 2 with KNOX/BELL transcription factors to maintain silencing of cell differentiation-promoting genes in the shoot apex. Plant Cell 34, 2969–2988 (2022).
Google Scholar
Zhao, L. et al. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658 (2020).
Google Scholar
Zhang, J. et al. Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data. Sci. Data 3, 1–8 (2016).
Google Scholar
Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A. Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).
Google Scholar
Hure, V., Piron-Prunier, F. & Déléris, A. DNA methylation either antagonizes or promotes Polycomb recruitment at transposable elements. Preprint at bioRxiv https://doi.org/10.1101/2024.10.11.617914 (2024).
Lv, Z., Zhao, W., Kong, S., Li, L. & Lin, S. Overview of molecular mechanisms of plant leaf development: a systematic review. Front. Plant Sci. 14, 1293424 (2023).
Google Scholar
Le Hir, R. & Bellini, C. The plant-specific Dof transcription factors family: new players involved in vascular system development and functioning in Arabidopsis. Front. Plant Sci. 4, 164 (2013).
Google Scholar
Dai, X. et al. Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize. Plant J. 109, 675–692 (2022).
Google Scholar
Yanagisawa, S. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J. 21, 281–288 (2000).
Google Scholar
Yanagisawa, S. & Sheen, J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10, 75–89 (1998).
Google Scholar
Borba, A. R. et al. Synergistic binding of bHLH transcription factors to the promoter of the maize NADP-ME gene used in C4 photosynthesis is based on an ancient code found in the ancestral C3 state. Mol. Biol. Evol. 35, 1690–1705 (2018).
Google Scholar
Wolfe, K. H., Gouy, M., Yang, Y.-W., Sharp, P. M. & Li, W.-H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl Acad. Sci. USA 86, 6201–6205 (1989).
Google Scholar
Gaut, B. S. & Doebley, J. F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl Acad. Sci. USA 94, 6809–6814 (1997).
Google Scholar
Chen, X. et al. SQUAMOSA promoter‐binding protein‐like transcription factors: star players for plant growth and development. J. Integr. Plant Biol. 52, 946–951 (2010).
Google Scholar
Denyer, T. et al. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell 48, 840–852. e845 (2019).
Google Scholar
Fang, J. et al. The URL1–ROC5–TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiol. 185, 1722–1744 (2021).
Google Scholar
Horstman, A. et al. AIL and HDG proteins act antagonistically to control cell proliferation. Development 142, 454–464 (2015).
Google Scholar
Qing, L. & Aoyama, T. Pathways for epidermal cell differentiation via the homeobox gene GLABRA2: update on the roles of the classic regulator F. J. Integr. Plant Biol. 54, 729–737 (2012).
Google Scholar
Rombolá-Caldentey, B., Rueda-Romero, P., Iglesias-Fernández, R., Carbonero, P. & Oñate-Sánchez, L. Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell 26, 2905–2919 (2014).
Google Scholar
Yu, L. H. et al. Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol. J. 14, 72–84 (2016).
Google Scholar
Hong, S.-Y., Kim, O.-K., Kim, S.-G., Yang, M.-S. & Park, C.-M. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. J. Biol. Chem. 286, 1659–1668 (2011).
Google Scholar
Rosado, D., Ackermann, A., Spassibojko, O., Rossi, M. & Pedmale, U. V. WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response. Plant Physiol. 188, 1294–1311 (2022).
Google Scholar
Brockington, S. F. et al. Evolutionary analysis of the MIXTA gene family highlights potential targets for the study of cellular differentiation. Mol. Biol. Evol. 30, 526–540 (2013).
Google Scholar
Huang, Y. et al. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. Plant Sci. 287, 110188 (2019).
Google Scholar
Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).
Google Scholar
Babarinde, I. A. & Saitou, N. Genomic locations of conserved noncoding sequences and their proximal protein-coding genes in mammalian expression dynamics. Mol. Biol. Evol. 33, 1807–1817 (2016).
Google Scholar
Song, B. et al. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res. 31, 1245–1257 (2021).
Google Scholar
Nelson, A. C. & Wardle, F. C. Conserved non-coding elements and cis regulation: actions speak louder than words. Development 140, 1385–1395 (2013).
Google Scholar
Hendelman, A. et al. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 184, 1724–1739. e1716 (2021).
Google Scholar
Wiles, E. T. & Selker, E. U. H3K27 methylation: a promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 43, 31–37 (2017).
Google Scholar
Guillotin, B. et al. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785–791 (2023).
Google Scholar
Goel, M. et al. The vast majority of somatic mutations in plants are layer-specific. Genome Biol. 25, 194 (2024).
Google Scholar
Andrews, G. et al. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science 380, eabn7930 (2023).
Google Scholar
Engelhorn, J. et al. Phenotypic variation in maize can be largely explained by genetic variation at transcription factor binding sites. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.551183 (2023).
Zhao, T. & Schranz, M. E. Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc. Natl Acad. Sci. USA 116, 2165–2174 (2019).
Google Scholar
Reineke, A. R., Bornberg-Bauer, E. & Gu, J. Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes. Nucleic Acids Res. 39, 6029–6043 (2011).
Google Scholar
Kaplinsky, N. J., Braun, D. M., Penterman, J., Goff, S. A. & Freeling, M. Utility and distribution of conserved noncoding sequences in the grasses. Proc. Natl Acad. Sci. USA 99, 6147–6151 (2002).
Google Scholar
Guo, H. & Moose, S. P. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. Plant Cell 15, 1143–1158 (2003).
Google Scholar
Inada, D. C. et al. Conserved noncoding sequences in the grasses4. Genome Res. 13, 2030–2041 (2003).
Google Scholar
Clark, J. W. & Donoghue, P. C. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 23, 933–945 (2018).
Google Scholar
Del Pozo, J. C. & Ramirez-Parra, E. Whole genome duplications in plants: an overview from Arabidopsis. J. Exp. Bot. 66, 6991–7003 (2015).
Google Scholar
Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58 (2009).
Google Scholar
Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).
Google Scholar
Ciren, D., Zebell, S. & Lippman, Z. B. Extreme restructuring of cis-regulatory regions controlling a deeply conserved plant stem cell regulator. PLoS Genet. 20, e1011174 (2024).
Google Scholar
Baumgart, L. A. et al. Recruitment, rewiring and deep conservation in flowering plant gene regulation. Nat. Plants 11, 1514–1527 (2025).
Google Scholar
Zhang, X., Marand, A. P., Yan, H. & Schmitz, R. J. scifi-ATAC-seq: massive-scale single-cell chromatin accessibility sequencing using combinatorial fluidic indexing. Genome Biol. 25, 90 (2024).
Google Scholar
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
Google Scholar
Ouyang, S. et al. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35, D883–D887 (2007).
Google Scholar
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
Google Scholar
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291. e289 (2019).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Google Scholar
Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).
Google Scholar
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).
Google Scholar
Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).
Google Scholar
Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Picard Toolkit. GitHub repository (Broad institute, 2019).
Nishimura, D. RepeatMasker. Biotech. Softw. Internet Rep. 1, 36–39 (2000).
Google Scholar
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 1–9 (2009).
Google Scholar
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, 1–9 (2008).
Google Scholar
DeBruine, Z. J., Melcher, K. & Triche, T. J. Jr. Fast and robust non-negative matrix factorization for single-cell experiments. Preprint at bioRxiv https://doi.org/10.1101/2021.09.01.458620 (2021).
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Pettkó-Szandtner, A. et al. Core cell cycle regulatory genes in rice and their expression profiles across the growth zone of the leaf. J. Plant Res. 128, 953–974 (2015).
Google Scholar
Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).
Google Scholar
Abney, S. Bootstrapping. In Proc. 40th Annual Meeting of the Association for Computational Linguistics (ACL) 360–367 (2002).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 1–11 (2015).
Google Scholar
Kaul, A., Bhattacharyya, S. & Ay, F. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc. 15, 991–1012 (2020).
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Google Scholar
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
Google Scholar
Dijk, D. V. et al. MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. Preprint at bioRxiv https://doi.org/10.1101/111591 (2017).
Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat. Methods 15, 267–270 (2018).
Google Scholar
Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2016).
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
Google Scholar
Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022).
Google Scholar
Wagner-Menghin, M. M. Binomial test. in Encyclopedia of Statistics in Behavioral Science 1st edn (eds Everitt, B. S. & Howell, D. C.) 158–163 (John Wiley & Sons, 2005).
Bolstad, B. M. preprocessCore: A collection of pre-processing functions. R Package v1.40.0 (Bioconductor, 2017).
Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. Elife 11, e78526 (2022).
Google Scholar
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 49, D10–D17 (2021).
Google Scholar
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
Google Scholar
Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).
Google Scholar
Siepel, A. & Haussler, D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol. Biol. Evol. 21, 468–488 (2004).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Google Scholar
Stovner, E. B. & Sætrom, P. epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics 35, 4392–4393 (2019).
Google Scholar
Xie, L. et al. RiceENCODE: a comprehensive epigenomic database as a rice Encyclopedia of DNA Elements. Mol. Plant 14, 1604–1606 (2021).
Google Scholar
Noshay, J. M. et al. Stability of DNA methylation and chromatin accessibility in structurally diverse maize genomes. G3 11, jkab190 (2021).
Google Scholar
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
Google Scholar
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Google Scholar
Tian, T. et al. agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122–W129 (2017).
Google Scholar
Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T‐DNA. Plant J. 6, 271–282 (1994).
Google Scholar
Hofmeister, B. T. & Schmitz, R. J. Enhanced JBrowse plugins for epigenomics data visualization. BMC Bioinformatics 19, 1–6 (2018).
Google Scholar
Shimadzu, S., Furuya, T. & Kondo, Y. Molecular mechanisms underlying the establishment and maintenance of vascular stem cells in Arabidopsis thaliana. Plant Cell Physiol. 64, 274–283 (2023).
Google Scholar
Otero, S. & Helariutta, Y. Companion cells: a diamond in the rough. J. Exp. Bot. 68, 71–78 (2016).
Google Scholar
Ramachandran, V. et al. Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED DOF2 regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis. Plant Mol. Biol. 104, 263–281 (2020).
Google Scholar
Kubo, H., Kishi, M. & Goto, K. Expression analysis of ANTHOCYANINLESS2 gene in Arabidopsis. Plant Sci. 175, 853–857 (2008).
Google Scholar
Amanda, D. et al. DEFECTIVE KERNEL1 (DEK1) regulates cell walls in the leaf epidermis. Plant Physiol. 172, 2204–2218 (2016).
Google Scholar
Alexandrov, N. et al. SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res. 43, D1023–D1027 (2015).
Google Scholar