Blog

  • Have McLaren made a rod for their own back with their driver swap in 2025 Italian Grand Prix?

    Have McLaren made a rod for their own back with their driver swap in 2025 Italian Grand Prix?

    McLaren made the headlines in Monza with their decision to swap their drivers late in the race after Lando Norris’ slow pit stop, so let’s take a closer look at how this played out – and what the ramifications might be moving forwards.

    The set-up of the swap is important to discuss here. McLaren were going about orchestrating their pit stops with planned sequencing, which they decided would favour the leading driver – in this case Norris. The reason for this was because of the way they ran their strategy on Sunday.

    The Italian Grand Prix was a rare occasion this year when they didn’t have the race pace of Max Verstappen. In the hope of winning the race, McLaren tried to extend their first stint as long as possible, hoping for an intervention from a Safety Car or a red flag, which would have given them a surprise shot of victory.

    Continue Reading

  • No bespoke rules for AI, FCA confirms

    No bespoke rules for AI, FCA confirms

    The FCA’s update outlined how it sees its existing regulatory framework mapping across to each of the five cross-sector regulatory principles.

    Principles and requirements set out in the FCA’s Principles for Business, as well as in its Handbook and Senior Management Arrangements, Systems and Controls (SYSC) sourcebook, were among those cited as relevant to firms’ use of AI.

    Other rules referenced include the consumer duty regime, requirements focused on ensuring operational resilience and fair treatment of vulnerable customers, as well as the Senior Managers and Certification Regime.

    In relation to accountability and governance, the FCA said, among other things, that the senior management function of firms subject to the enhanced SMCR regime will be responsible for “any use of AI in relation to an activity, business area, or management function of a firm”.

    The regulator added that firms’ reporting requirements in line with the consumer duty could also encompass “consideration of current or future use of AI technologies where it might impact retail consumer outcomes or assist in monitoring and evaluating those outcomes”.

    “Firms deploying AI should expect heightened scrutiny around governance, explainability, and accountability – particularly where AI systems materially impact consumer outcomes or decision-making,” said Sébastien Ferrière of Pinsent Masons.

    Continue Reading

  • Researchers find key to Antarctic ice loss blowing in the north wind

    Researchers find key to Antarctic ice loss blowing in the north wind

    September 10, 2025

    Continue Reading

  • Cabinet approves resumption of new gas connections; declares climate and agriculture emergencies – Pakistan

    Cabinet approves resumption of new gas connections; declares climate and agriculture emergencies – Pakistan

    Petroleum Minister Ali Pervaiz Malik on Wednesday announced that the federal cabinet has approved the resumption of new gas connections across the country, ending the ban imposed in 2021.

    Briefing the media on cabinet decisions along with Federal Minister for Parliamentary Affairs Tariq Fazal Chaudhry, he said the government had responded to strong public demand by lifting the restriction on new connections.

    He said the cabinet took several key decisions, including restoring new domestic gas connections, particularly in newly developed housing areas where residents had been forced to rely on LPG cylinders and alternative fuels.

    The minister assured that both Sui companies had already completed procurement processes for meters and pipelines, and would immediately begin processing pending applications once the official notification is issued.

    Existing applicants would also be given the option to convert their requests to RLNG-based connections by paying the prescribed security fee to the Oil and Gas Regulatory Authority, he added.

    Highlighting the government’s commitment to easing the energy burden on citizens, the minister said the decision would help reduce household fuel expenses and provide much-needed relief amid inflation.

    He explained that although RLNG would remain costlier than domestic natural gas, it would be around 30–35 per cent cheaper than LPG, thereby easing household fuel costs.

    “We already have a surplus of RLNG and adequate electricity availability, but we are working to strengthen governance and sustainability in the sector,” he added.

    He said that one bidding round for domestic gas exploration had already been completed, while another would conclude soon.

    Chaudhry said Prime Minister Shehbaz Sharif had decided to lift the ban on domestic gas connections imposed in 2021 to address a longstanding public demand.

    He expressed gratitude to the premier and the petroleum minister for resolving a major issue that households had been facing for years. “The difficulties caused by the suspension of gas connections will now be resolved,” he added.

    Malik said efforts were also being made to attract international companies, including those from Turkiye, China and the United States, for both onshore and offshore exploration.

    “By gradually boosting local production, we aim to reduce reliance on RLNG and provide cheaper, indigenous fuel to the people,” he said.

    He reiterated the government’s determination to achieve sustainability in the energy sector, reduce dependence on costly imports, and gradually shift towards indigenous fuel resources.

    On the floods, he said the prime minister was personally supervising a comprehensive damage assessment in consultation with provinces. The federal government, he assured, would fulfil its responsibility to provide maximum relief to the victims.

    Cabinet declares climate, agriculture emergencies

    Meanwhile, Chaudhry said the federal cabinet declared both a climate and agriculture emergency in the country.

    Sharing details of the cabinet meeting, he said the premier had decided, and the cabinet endorsed, the immediate enforcement of a climate emergency.

    Climate change, he said, was already one of the most debated subjects globally and was severely affecting Pakistan through shifting weather patterns.

    “Unfortunately, in past decades, we failed to protect our forests and trees, while encroachments narrowed natural waterways — rivers, streams, and channels that once allowed easy passage of rainwater. This has worsened the flooding situation we see today,” he said.

    The minister added that the climate minister was tasked with submitting a comprehensive report to PM Shehbaz within 15 days. He added that the cabinet would deliberate on the report, to figure out how Pakistan could cope with climatic challenges and prepare effective strategies to protect the nation from such devastating losses in the future.

    “Since 2022, we have witnessed the devastation caused by floods in Khyber Pakhtunkhwa, Gilgit-Baltistan and Punjab. Now, this water is flowing into Sindh from the five-river basin, and our prayers and efforts are focused on minimising the losses there as well,” he said.

    The minister said the floods had caused massive destruction, particularly to agriculture, along with human and financial losses — a matter discussed in detail during the cabinet meeting.

    An agriculture emergency, he said, would help assess the extent of damage to agriculture across the country and determine how farmers can be compensated for their losses.

    Chaudhry stressed that climate and agriculture challenges could not be addressed without the cooperation, support, and consultation of provincial governments.

    Therefore, he said the prime minister had decided to convene an immediate meeting of all provincial stakeholders under the leadership of their respective chief ministers.

    “This country belongs to all of us, and together we must overcome its challenges,” he said, adding that stakeholders from GB and Azad Kashmir would also participate in the huddle.

    Continue Reading

  • Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).

    Article 
    CAS 

    Google Scholar 

  • Popovic, J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 12, 6240 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2018).

    Article 

    Google Scholar 

  • Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    Article 
    CAS 

    Google Scholar 

  • Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, X. et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xie, J. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, eaao3170 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, D. et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, C., Xu, F. & Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hope, M. A. et al. Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11, 2224 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • May, R., Fritzsching, K. J., Livitz, D., Denny, S. R. & Marbella, L. E. Rapid interfacial exchange of Li ions dictates high Coulombic efficiency in Li metal anodes. ACS Energy Lett. 6, 1162–1169 (2021).

    Article 
    CAS 

    Google Scholar 

  • Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 30, 16719–16732 (2021).

    Article 

    Google Scholar 

  • Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yildirim, H., Kinaci, A., Chan, M. K. Y. & Greeley, J. P. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • May, R., Hestenes, J. C., Munich, N. A. & Marbella, L. E. Fluorinated ether decomposition in localized high concentration electrolytes. J. Power Sources 553, 232299 (2023).

    Article 
    CAS 

    Google Scholar 

  • Svirinovsky-Arbeli, A., Juelsholt, M., May, R., Kwon, Y. & Marbella, L. E. Using NMR spectroscopy to link structure to function at the Li solid electrolyte interphase. Joule 8, 1919–1935 (2024).

    Article 
    CAS 

    Google Scholar 

  • Hu, J. Z., Kwak, J. H., Yang, Z., Wan, X. & Shaw, L. L. Detailed investigation of ion exchange in ball-milled LiH+MgB2 system using ultra-high field nuclear magnetic resonance spectroscopy. J. Power Sources 195, 3645–3648 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhong, G. et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situ TEM and 7Li NMR approach. J. Mater. Chem. A 7, 19793–19799 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gombotz, M. et al. Insulator:conductor interfacial regions — Li ion dynamics in the nanocrystalline dispersed ionic conductor LiF:TiO2. Solid State Ion. 369, 115726 (2021).

    Article 
    CAS 

    Google Scholar 

  • Saldan, I. et al. Hydrogen sorption in the LiH–LiF–MgB2 system. J. Phys. Chem. C 117, 17360–17366 (2013).

    Article 
    CAS 

    Google Scholar 

  • Pinatel, E. R., Corno, M., Ugliengo, P. & Baricco, M. Effects of metastability on hydrogen sorption in fluorine substituted hydrides. J. Alloys Compd. 615, S706–S710 (2014).

    Article 
    CAS 

    Google Scholar 

  • Pighin, S. A., Urretavizcaya, G. & Castro, F. J. Reversible hydrogen storage in Mg(HxF1−x)2 solid solutions. J. Alloys Compd. 708, 108–114 (2017).

    Article 
    CAS 

    Google Scholar 

  • Pistidda, C. et al. Effect of the partial replacement of CaH2 with CaF2 in the mixed system CaH2 + MgB2. J. Phys. Chem. C 118, 28409–28417 (2014).

    Article 
    CAS 

    Google Scholar 

  • Sitthiwet, C. et al. Hydrogen sorption kinetics and suppression of NH3 emission of LiH-sandwiched LiNH2-LiH-TiF4-MWCNTs pellets upon cycling. J. Alloys Compd. 909, 164673 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

    Article 
    CAS 

    Google Scholar 

  • Breuer, O., Gofer, Y., Elias, Y., Fayena-Greenstein, M. & Aurbach, D. Misuse of XPS in analyzing solid polymer electrolytes for lithium batteries. J. Electrochem. Soc. 171, 030510 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ilott, A. J. & Jerschow, A. Probing solid-electrolyte interphase (SEI) growth and ion permeability at undriven electrolyte–metal interfaces using 7Li NMR. J. Phys. Chem. C 122, 12598–12604 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar 

  • Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Henkelman, G. et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article 
    CAS 

    Google Scholar 

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brivio, F. et al. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1−xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

Continue Reading

  • Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumours

    Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumours

  • DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Swann, J. W., Olson, O. C. & Passegue, E. Made to order: emergency myelopoiesis and demand-adapted innate immune cell production. Nat. Rev. Immunol. 24, 596–613 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid tumours. Nat. Rev. Immunol. 23, 106–120 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sica, A., Guarneri, V. & Gennari, A. Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress 3, 284–294 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Giles, A. J. et al. Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 76, 1335–1347 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Casbon, A. J. et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl Acad. Sci. USA 112, E566–E575 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, W. C. et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc. Natl Acad. Sci. USA 111, 4221–4226 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Porembka, M. R. et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol. Immunother. 61, 1373–1385 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Trzebanski, S. et al. Classical monocyte ontogeny dictates their functions and fates as tissue macrophages. Immunity 57, 1225–1243 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ikeda, N. et al. The early neutrophil-committed progenitors aberrantly differentiate into immunoregulatory monocytes during emergency myelopoiesis. Cell Rep. 42, 112165 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • LaMarche, N. M. et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 625, 166–174 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Hao, X. et al. Osteoprogenitor–GMP crosstalk underpins solid tumor-induced systemic immunosuppression and persists after tumor removal. Cell Stem Cell 30, 648–664 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gerber-Ferder, Y. et al. Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nat. Cell Biol. 25, 1736–1745 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dey, S., Curtis, D. J., Jane, S. M. & Brandt, S. J. The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol. Cell. Biol. 30, 2181–2192 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pham, T. H. et al. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119, e161–e171 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mandula, J. K. & Rodriguez, P. C. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol. 363, 104312 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kwart, D. et al. Cancer cell-derived type I interferons instruct tumor monocyte polarization. Cell Rep. 41, 111769 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Alicea-Torres, K. et al. Immune suppressive activity of myeloid-derived suppressor cells in cancer requires inactivation of the type I interferon pathway. Nat. Commun. 12, 1717 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kwak, H. J. et al. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 42, 159–171 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pizzato, H. A. et al. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. J. Exp. Med. 220, e20221373 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pietras, E. M. et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J. Exp. Med. 211, 245–262 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • McGinnis, C. S. et al. The temporal progression of lung immune remodeling during breast cancer metastasis. Cancer Cell 42, 1018–1031 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Beury, D. W. et al. Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J. Immunol. 196, 3470–3478 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Namgaladze, D., Fuhrmann, D. C. & Brune, B. Interplay of Nrf2 and BACH1 in inducing ferroportin expression and enhancing resistance of human macrophages towards ferroptosis. Cell Death Discov. 8, 327 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ryan, D. G. et al. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. iScience 25, 103827 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Olagnier, D. et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat. Commun. 9, 3506 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ting, K. K. Y. et al. Oxidized low-density lipoprotein accumulation suppresses glycolysis and attenuates the macrophage inflammatory response by diverting transcription from the HIF-1alpha to the Nrf2 pathway. J. Immunol. 211, 1561–1577 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Park, M. D. et al. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat. Immunol. 24, 792–801 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Alaluf, E. et al. Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages. JCI Insight 5, e133929 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hu, J. et al. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med. 15, 14 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Taniguchi, S. et al. In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nat. Commun. 14, 143 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gomez-Chou, S. B. et al. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Cancer Res. 77, 2647–2660 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, Z. et al. Proinflammatory S100A8 induces PD-L1 expression in macrophages, mediating tumor immune escape. J. Immunol. 204, 2589–2599 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Uccellini, M. B. & Garcia-Sastre, A. ISRE-reporter mouse reveals high basal and induced type I IFN responses in inflammatory monocytes. Cell Rep. 25, 2784–2796 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Singh, A. et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem. Biol. 11, 3214–3225 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schaer, D. J. et al. Hemorrhage-activated NRF2 in tumor-associated macrophages drives cancer growth, invasion, and immunotherapy resistance. J. Clin. Invest. 134, e174528 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ren, D. et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl Acad. Sci. USA 108, 1433–1438 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Perrone, M. et al. ATF3 reprograms the bone marrow niche in response to early breast cancer transformation. Cancer Res. 83, 117–129 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, M. et al. Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells. Cell Death Discov. 9, 274 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Laurenti, E. et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3, 611–624 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Villar, J. et al. ETV3 and ETV6 enable monocyte differentiation into dendritic cells by repressing macrophage fate commitment. Nat. Immunol. 24, 84–95 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ratajczak, M. Z. & Kucia, M. Hematopoiesis and innate immunity: an inseparable couple for good and bad times, bound together by an hormetic relationship. Leukemia 36, 23–32 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhao, Y. et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 35, 1688–1703 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Garner, H. et al. Understanding and reversing mammary tumor-driven reprogramming of myelopoiesis to reduce metastatic spread. Cancer Cell 43, 1279–1295 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Daman, A. W. et al. Microbial cancer immunotherapy reprograms hematopoiesis to enhance myeloid-driven anti-tumor immunity. Cancer Cell https://doi.org/10.1016/j.ccell.2025.05.002 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Singh, A. et al. NRF2 activation promotes aggressive lung cancer and associates with poor clinical outcomes. Clin. Cancer Res. 27, 877–888 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic—a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mohamed, E. et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 52, 668–682 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Raines, L. N. et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat. Immunol. 23, 431–445 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kress, J. K. C. et al. The integrated stress response effector ATF4 is an obligatory metabolic activator of NRF2. Cell Rep. 42, 112724 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Boumelha, J. et al. An immunogenic model of KRAS-mutant lung cancer enables evaluation of targeted therapy and immunotherapy combinations. Cancer Res. 82, 3435–3448 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Calcagno, D. M. et al. The myeloid type I interferon response to myocardial infarction begins in bone marrow and is regulated by Nrf2-activated macrophages. Sci. Immunol. 5, eaaz1974 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Agrawal, A. et al. WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 52, D679–D689 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Crowell, H. L. et al. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell Genom. 2, 100166 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lee, J. J. Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks. J. Exp. Med. 222, e20241207 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, Y. et al. Spatiotemporal single-cell analysis decodes cellular dynamics underlying different responses to immunotherapy in colorectal cancer. Cancer Cell 42, 1268–1285 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bravo Gonzalez-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Continue Reading

  • The emergence of globular clusters and globular-cluster-like dwarfs

    The emergence of globular clusters and globular-cluster-like dwarfs

  • Brodie, J. P. & Strader, J. Extragalactic globular clusters and galaxy formation. Annu. Rev. Astron. Astrophys. 44, 193–267 (2006).

    Article 
    CAS 

    Google Scholar 

  • Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).

    Article 

    Google Scholar 

  • Simon, J. D. et al. Timing the r-process enrichment of the ultra-faint dwarf galaxy Reticulum II. Astrophys. J. 944, 43 (2023).

    Article 

    Google Scholar 

  • Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).

    Article 

    Google Scholar 

  • Rodriguez, C. L. et al. The observed rate of binary black hole mergers can be entirely explained by globular clusters. Res. Not. Am. Astron. Soc. 5, 19 (2021).

    Google Scholar 

  • Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).

    Article 

    Google Scholar 

  • Häberle, M. et al. Fast-moving stars around an intermediate-mass black hole in ω Centauri. Nature 631, 285–288 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bañares-Hernández, A., Calore, F., Camalich, J. M. & Read, J. I. New constraints on the central mass contents of Omega Centauri from combined stellar kinematics and pulsar timing. Astron. Astrophys. 693, A104 (2025).

    Article 

    Google Scholar 

  • Evans, A. J., Strigari, L. E. & Zivick, P. Dark and luminous mass components of Omega Centauri from stellar kinematics. Mon. Not. R. Astron. Soc. 511, 4251–4264 (2022).

    Article 
    CAS 

    Google Scholar 

  • Carlberg, R. G. & Grillmair, C. J. The dark matter halo of M54. Astrophys. J. 935, 14 (2022).

    Article 

    Google Scholar 

  • Wan, Z. et al. Dynamics in the outskirts of four Milky Way globular clusters: it’s the tides that dominate. Mon. Not. R. Astron. Soc. 519, 192–207 (2023).

    Article 
    CAS 

    Google Scholar 

  • Grudić, M. Y. et al. Great balls of FIRE – I. The formation of star clusters across cosmic time in a Milky Way-mass galaxy. Mon. Not. R. Astron. Soc. 519, 1366–1380 (2023).

    Article 

    Google Scholar 

  • Ashman, K. M. & Zepf, S. E. The formation of globular clusters in merging and interacting galaxies. Astrophys. J. 384, 50–61 (1992).

    Article 

    Google Scholar 

  • Sameie, O. et al. Formation of proto-globular cluster candidates in cosmological simulations of dwarf galaxies at z > 4. Mon. Not. R. Astron. Soc. 522, 1800–1813 (2023).

    Article 
    CAS 

    Google Scholar 

  • Naoz, S. & Narayan, R. Globular clusters and dark satellite galaxies through the stream velocity. Astrophys. J. Lett. 791, L8 (2014).

    Article 

    Google Scholar 

  • Lake, W. et al. The Supersonic Project: star formation in early star clusters without dark matter. Astrophys. J. Lett. 956, L7 (2023).

    Article 

    Google Scholar 

  • Peebles, P. J. E. & Dicke, R. H. Origin of the globular star clusters. Astrophys. J. 154, 891 (1968).

    Article 

    Google Scholar 

  • Fall, S. M. & Rees, M. J. A theory for the origin of globular clusters. Astrophys. J. 298, 18–26 (1985).

    Article 
    CAS 

    Google Scholar 

  • Kravtsov, A. V. & Gnedin, O. Y. Formation of globular clusters in hierarchical cosmology. Astrophys. J. 623, 650–665 (2005).

    Article 
    CAS 

    Google Scholar 

  • Peebles, P. J. E. Dark matter and the origin of galaxies and globular star clusters. Astrophys. J. 277, 470–477 (1984).

    Article 
    CAS 

    Google Scholar 

  • Boley, A. C., Lake, G., Read, J. & Teyssier, R. Globular cluster formation within a cosmological context. Astrophys. J. Lett. 706, L192–L196 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gutcke, T. A. Low-mass globular clusters from stripped dark matter halos. Astrophys. J. 971, 103 (2024).

    Article 

    Google Scholar 

  • Mashchenko, S. & Sills, A. Globular clusters with dark matter halos. II. Evolution in a tidal field. Astrophys. J. 619, 258–269 (2005).

    Article 

    Google Scholar 

  • Baumgardt, H. & Mieske, S. High mass-to-light ratios of ultra-compact dwarf galaxies – evidence for dark matter?. Mon. Not. R. Astron. Soc. 391, 942–948 (2008).

    Article 
    CAS 

    Google Scholar 

  • Vitral, E. & Boldrini, P. Properties of globular clusters formed in dark matter mini-halos. Astron. Astrophys. 667, A112 (2022).

    Article 

    Google Scholar 

  • Kim, C.-G. & Ostriker, E. C. Momentum injection by supernovae in the interstellar medium. Astrophys. J. 802, 99 (2015).

    Article 

    Google Scholar 

  • Agertz, O. et al. EDGE: the mass–metallicity relation as a critical test of galaxy formation physics. Mon. Not. R. Astron. Soc. 491, 1656–1672 (2020).

    Article 
    CAS 

    Google Scholar 

  • Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A. & Grillmair, C. J. Properties of globular cluster systems in nearby early-type galaxies. Astron. J. 121, 2974–2998 (2001).

    Article 
    CAS 

    Google Scholar 

  • Renaud, F., Agertz, O. & Gieles, M. The origin of the Milky Way globular clusters. Mon. Not. R. Astron. Soc. 465, 3622–3636 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gray, E. I. et al. EDGE: a new model for nuclear star cluster formation in dwarf galaxies. Mon. Not. R. Astron. Soc. 539, 1167–1179 (2025).

    Article 

    Google Scholar 

  • Kirby, E. N. et al. The universal stellar mass–stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).

    Article 

    Google Scholar 

  • Rey, M. P. et al. EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 497, 1508–1520 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lahén, N., Naab, T. & Szécsi, D. Star clusters forming in a low-metallicity starburst – rapid self-enrichment by (very) massive stars. Mon. Not. R. Astron. Soc. 530, 645–667 (2024).

    Article 

    Google Scholar 

  • Lahén, N. et al. The GRIFFIN project—formation of star clusters with individual massive stars in a simulated dwarf galaxy starburst. Astrophys. J. 891, 2 (2020).

    Article 

    Google Scholar 

  • Calura, F. et al. Sub-parsec resolution cosmological simulations of star-forming clumps at high redshift with feedback of individual stars. Mon. Not. R. Astron. Soc. 516, 5914–5934 (2022).

    Article 

    Google Scholar 

  • Schneider, A., Smith, R. E., Macciò, A. V. & Moore, B. Non-linear evolution of cosmological structures in warm dark matter models. Mon. Not. R. Astron. Soc. 424, 684–698 (2012).

    Article 

    Google Scholar 

  • Lapi, A. et al. Astroparticle constraints from cosmic reionization and primordial galaxy formation. Universe 8, 476 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bond, H. E. Where is population III? Astrophys. J. 248, 606–611 (1981).

    Article 
    CAS 

    Google Scholar 

  • Trussler, J. A. A. et al. On the observability and identification of Population III galaxies with JWST. Mon. Not. R. Astron. Soc. 525, 5328–5352 (2023).

    Article 
    CAS 

    Google Scholar 

  • Martin, N. F. et al. A stellar stream remnant of a globular cluster below the metallicity floor. Nature 601, 45–48 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Errani, R. et al. The Pristine survey – XVIII. C-19: tidal debris of a dark matter-dominated globular cluster? Mon. Not. R. Astron. Soc. 514, 3532–3540 (2022).

    Article 
    CAS 

    Google Scholar 

  • Simon, J. D. et al. Eridanus III and DELVE 1: carbon-rich primordial star clusters or the smallest dwarf galaxies? Astrophys. J. 976, 256 (2024).

    Article 
    CAS 

    Google Scholar 

  • Hayes, C. R. et al. GHOST commissioning science results: identifying a new chemically peculiar star in Reticulum II. Astrophys. J. 955, 17 (2023).

    Article 

    Google Scholar 

  • Jeon, M., Besla, G. & Bromm, V. Highly r-process enhanced stars in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc. 506, 1850–1861 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rey, M. P. et al. EDGE: the origin of scatter in ultra-faint dwarf stellar masses and surface brightnesses. Astrophys. J. Lett. 886, L3 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rey, M. P. et al. EDGE: what shapes the relationship between H i and stellar observables in faint dwarf galaxies?. Mon. Not. R. Astron. Soc. 511, 5672–5681 (2022).

    Article 
    CAS 

    Google Scholar 

  • Orkney, M. D. A. et al. EDGE: the shape of dark matter haloes in the faintest galaxies. Mon. Not. R. Astron. Soc. 525, 3516–3532 (2023).

    Article 
    CAS 

    Google Scholar 

  • Eisenstein, D. J. & Hut, P. HOP: a new group-finding algorithm for N-body simulations. Astrophys. J. 498, 137 (1998).

    Article 

    Google Scholar 

  • Knollmann, S. R. & Knebe, A. AHF: Amiga’s halo finder. Astrophys. J. Suppl. Ser. 182, 608 (2009).

    Article 

    Google Scholar 

  • Katz, N. & White, S. D. M. Hierarchical galaxy formation: overmerging and the formation of an X-ray cluster. Astrophys. J. 412, 455–478 (1993).

    Article 

    Google Scholar 

  • Ade, P. A. R. et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).

    Article 

    Google Scholar 

  • Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement-A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).

    Article 

    Google Scholar 

  • Kravtsov, A. V., Klypin, A. A. & Khokhlov, A. M. Adaptive refinement tree: a new high-resolution N-body code for cosmological simulations. Astrophys. J. Suppl. Ser. 111, 73–94 (1997).

    Article 
    CAS 

    Google Scholar 

  • Pontzen, A. et al. EDGE: a new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation. Mon. Not. R. Astron. Soc. 501, 1755–1765 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stopyra, S., Pontzen, A., Peiris, H., Roth, N. & Rey, M. P. GenetIC—a new initial conditions generator to support genetically modified zoom simulations. Astrophys. J. Suppl. Ser. 252, 28 (2021).

    Article 
    CAS 

    Google Scholar 

  • Roth, N., Pontzen, A. & Peiris, H. V. Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation. Mon. Not. R. Astron. Soc. 455, 974–986 (2016).

    Article 
    CAS 

    Google Scholar 

  • Rey, M. P. & Pontzen, A. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history. Mon. Not. R. Astron. Soc. 474, 45–54 (2018).

    Article 

    Google Scholar 

  • Rosen, A. & Bregman, J. N. Global models of the interstellar medium in disk galaxies. Astrophys. J. 440, 634 (1995).

    Article 

    Google Scholar 

  • Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).

    Article 

    Google Scholar 

  • Andersson, E. P., Agertz, O., Renaud, F. & Teyssier, R. INFERNO: galactic winds in dwarf galaxies with star-by-star simulations including runaway stars. Mon. Not. R. Astron. Soc. 521, 2196–2214 (2023).

    Article 
    CAS 

    Google Scholar 

  • Andersson, E. P., Agertz, O. & Renaud, F. How runaway stars boost galactic outflows. Mon. Not. R. Astron. Soc. 494, 3328–3341 (2020).

    Article 
    CAS 

    Google Scholar 

  • Steinwandel, U. P., Bryan, G. L., Somerville, R. S., Hayward, C. C. & Burkhart, B. On the impact of runaway stars on dwarf galaxies with resolved interstellar medium. Mon. Not. R. Astron. Soc. 526, 1408–1427 (2023).

    Article 
    CAS 

    Google Scholar 

  • Andersson, E. P. et al. EDGE-INFERNO: simulating every observable star in faint dwarf galaxies and their consequences for resolved-star photometric surveys. Astrophys. J. 978, 129 (2025).

    Article 

    Google Scholar 

  • Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with kinetic supernova feedback. Mon. Not. R. Astron. Soc. 387, 1431–1444 (2008).

    Article 

    Google Scholar 

  • Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with thermal supernova feedback. Mon. Not. R. Astron. Soc. 426, 140–158 (2012).

    Article 

    Google Scholar 

  • Kravtsov, A. V. On the origin of the global Schmidt law of star formation. Astrophys. J. 590, L1–L4 (2003).

    Article 

    Google Scholar 

  • Saitoh, T. R. et al. Toward first-principle simulations of galaxy formation: I. How should we choose star-formation criteria in high-resolution simulations of disk galaxies? Publ. Astron. Soc. Jpn. 60, 667–681 (2008).

    Article 

    Google Scholar 

  • Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    Article 
    CAS 

    Google Scholar 

  • Rey, M. P. et al. EDGE: the emergence of dwarf galaxy scaling relations from cosmological radiation-hydrodynamics simulations. Mon. Not. R. Astron. Soc. 541, 1195–1217 (2025).

    Article 

    Google Scholar 

  • Prgomet, M. et al. EDGE: the sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function. Mon. Not. R. Astron. Soc. 513, 2326–2334 (2022).

    Article 
    CAS 

    Google Scholar 

  • Orkney, M. D. A. et al. EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 504, 3509–3522 (2021).

    Article 
    CAS 

    Google Scholar 

  • Orkney, M. D. A., Read, J. I., Petts, J. A. & Gieles, M. Globular clusters as probes of dark matter cusp-core transformations. Mon. Not. R. Astron. Soc. 488, 2977–2988 (2019).

    Article 
    CAS 

    Google Scholar 

  • Orkney, M. D. A. et al. EDGE: the puzzling ellipticity of Eridanus II’s star cluster and its implications for dark matter at the heart of an ultra-faint dwarf. Mon. Not. R. Astron. Soc. 515, 185–200 (2022).

    Article 

    Google Scholar 

  • Klypin, A., Prada, F., Yepes, G., Heß, S. & Gottlöber, S. Halo abundance matching: accuracy and conditions for numerical convergence. Mon. Not. R. Astron. Soc. 447, 3693–3707 (2015).

    Article 
    CAS 

    Google Scholar 

  • Knebe, A. et al. Haloes gone MAD: The Halo-Finder Comparison Project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011).

    Article 

    Google Scholar 

  • Pujol, A. et al. Subhaloes gone Notts: the clustering properties of subhaloes. Mon. Not. R. Astron. Soc. 438, 3205–3221 (2014).

    Article 

    Google Scholar 

  • Forouhar Moreno, V. J. et al. Assessing subhalo finders in cosmological hydrodynamical simulations. Preprint at https://arxiv.org/abs/2502.06932 (2025).

  • McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).

    Article 

    Google Scholar 

  • Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

    Article 

    Google Scholar 

  • Pontzen, A., Roškar, R., Stinson, G. & Woods, R. pynbody: N-body/SPH analysis for python (2013).

  • Pontzen, A. & Tremmel, M. TANGOS: the agile numerical galaxy organization system. Astrophys. J. Suppl. Ser. 237, 23 (2018).

    Article 

    Google Scholar 

  • Girardi, L. et al. The ACS Nearby Galaxy Survey Treasury. IX. Constraining asymptotic giant branch evolution with old metal-poor galaxies. Astrophys. J. 724, 1030–1043 (2010).

    Article 

    Google Scholar 

  • Marigo, P. et al. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. Astron. Astrophys. 482, 883–905 (2008).

    Article 
    CAS 

    Google Scholar 

  • Kravtsov, A. V. The size–virial radius relation of galaxies. Astrophys. J. Lett. 764, L31 (2013).

    Article 

    Google Scholar 

  • Pace, A. B. The Local Volume Database: a library of the observed properties of nearby dwarf galaxies and star clusters. Preprint at https://doi.org/10.48550/arXiv.2411.07424 (2024).

  • Kim, D. & Jerjen, H. A hero’s little horse: discovery of a dissolving star cluster in Pegasus. Astrophys. J. 799, 73 (2015).

    Article 

    Google Scholar 

  • Torrealba, G., Belokurov, V. & Koposov, S. E. Nine tiny star clusters in Gaia DR1, PS1, and DES. Mon. Not. R. Astron. Soc. 484, 2181–2197 (2019).

    Article 
    CAS 

    Google Scholar 

  • Voggel, K. et al. Probing the boundary between star clusters and dwarf galaxies: a MUSE view on the dynamics of Crater/Laevens I. Mon. Not. R. Astron. Soc. 460, 3384–3397 (2016).

    Article 

    Google Scholar 

  • Weisz, D. R. et al. A Hubble Space Telescope study of the enigmatic Milky Way halo globular cluster crater. Astrophys. J. 822, 32 (2016).

    Article 

    Google Scholar 

  • Cerny, W. et al. Six more ultra-faint Milky Way companions discovered in the DECam Local Volume Exploration survey. Astrophys. J. 953, 1 (2023).

    Article 
    CAS 

    Google Scholar 

  • Martin, N. F. et al. SMASH 1: a very faint globular cluster disrupting in the outer reaches of the LMC? Astrophys. J. Lett. 830, L10 (2016).

    Article 

    Google Scholar 

  • Mau, S. et al. A faint halo star cluster discovered in the Blanco Imaging of the Southern Sky Survey. Astrophys. J. 875, 154 (2019).

    Article 
    CAS 

    Google Scholar 

  • Balbinot, E. et al. A new Milky Way halo star cluster in the Southern Galactic Sky. Astrophys. J. 767, 101 (2013).

    Article 

    Google Scholar 

  • Homma, D. et al. Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem. Publ. Astron. Soc. Jpn. 71, 94 (2019).

    Article 

    Google Scholar 

  • Mau, S. et al. Two ultra-faint Milky Way stellar systems discovered in early data from the DECam Local Volume Exploration survey. Astrophys. J. 890, 136 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fadely, R. et al. Segue 3: an old, extremely low luminosity star cluster in the Milky Way’s halo. Astron. J. 142, 88 (2011).

    Article 

    Google Scholar 

  • Muñoz, R. R. et al. A MegaCam survey of outer halo satellites. III. Photometric and structural parameters. Astrophys. J. 860, 66 (2018).

    Article 

    Google Scholar 

  • Conn, B. C., Jerjen, H., Kim, D. & Schirmer, M. On the nature of ultra-faint dwarf galaxy candidates. I. DES1, Eridanus III, and Tucana V. Astrophys. J. 852, 68 (2018).

    Article 

    Google Scholar 

  • Longeard, N. et al. Detailed study of the Milky Way globular cluster Laevens 3. Mon. Not. R. Astron. Soc. 490, 1498–1508 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cerny, W. et al. DELVE 6: an ancient, ultra-faint star cluster on the outskirts of the Magellanic Clouds. Astrophys. J. Lett. 953, L21 (2023).

    Article 

    Google Scholar 

  • Longeard, N. et al. The pristine dwarf-galaxy survey – III. Revealing the nature of the Milky Way globular cluster Sagittarius II. Mon. Not. R. Astron. Soc. 503, 2754–2762 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mutlu-Pakdil, B. et al. A deeper look at the new Milky Way satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III. Astrophys. J. 863, 25 (2018).

    Article 

    Google Scholar 

  • Richstein, H. et al. Deep Hubble Space Telescope photometry of Large Magellanic Cloud and Milky Way ultrafaint dwarfs: a careful look into the magnitude–size relation. Astrophys. J. 967, 72 (2024).

    Article 
    CAS 

    Google Scholar 

  • Muñoz, R. R. et al. The discovery of an ultra-faint star cluster in the constellation of Ursa Minor. Astrophys. J. Lett. 753, L15 (2012).

    Article 

    Google Scholar 

  • Luque, E. et al. Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey. Mon. Not. R. Astron. Soc. 478, 2006–2018 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cerny, W. et al. Discovery of an ultra-faint stellar system near the Magellanic Clouds with the DECam Local Volume Exploration Survey. Astrophys. J. 910, 18 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gatto, M. et al. Deep very large telescope photometry of the faint stellar system in the Large Magellanic Cloud periphery YMCA-1. Astrophys. J. Lett. 929, L21 (2022).

    Article 

    Google Scholar 

  • Kim, D., Jerjen, H., Milone, A. P., Mackey, D. & Da Costa, G. S. Discovery of a faint outer halo Milky Way star cluster in the southern sky. Astrophys. J. 803, 63 (2015).

    Article 

    Google Scholar 

  • McConnachie, A. W. & Irwin, M. J. Structural properties of the M31 dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 365, 1263–1276 (2006).

    Article 

    Google Scholar 

  • McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article 

    Google Scholar 

  • Makarova, L. N. et al. A nearby isolated dwarf: star formation and structure of ESO 006-001. Astrophys. J. 943, 139 (2023).

    Article 

    Google Scholar 

  • Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).

    Article 

    Google Scholar 

  • Dalcanton, J. J. et al. The ACS Nearby Galaxy Survey Treasury. Astrophys. J. Suppl. Ser. 183, 67–108 (2009).

    Article 

    Google Scholar 

  • Koribalski, B. S. et al. The 1000 brightest HIPASS galaxies: H I properties. Astron. J. 128, 16–46 (2004).

    Article 
    CAS 

    Google Scholar 

  • Newman, M. J. B. et al. An empirical calibration of the tip of the red giant branch distance method in the near infrared. I. HST WFC3/IR F110W and F160W filters. Astrophys. J. 966, 175 (2024).

    Article 
    CAS 

    Google Scholar 

  • Jones, M. G. et al. Pavo: discovery of a star-forming dwarf galaxy just outside the Local Group. Astrophys. J. Lett. 957, L5 (2023).

    Article 

    Google Scholar 

  • Karachentsev, I. D. et al. A new galaxy near the Local Group in Draco. Astron. Astrophys. 379, 407–411 (2001).

    Article 

    Google Scholar 

  • Higgs, C. R. et al. Solo dwarfs II: the stellar structure of isolated Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 503, 176–199 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kirby, E. N. et al. Chemistry and kinematics of the late-forming dwarf irregular galaxies Leo A, Aquarius, and Sagittarius DIG. Astrophys. J. 834, 9 (2017).

    Article 

    Google Scholar 

  • McQuinn, K. B. W. et al. Pegasus W: an ultrafaint dwarf galaxy outside the halo of M31 not quenched by reionization. Astrophys. J. 944, 14 (2023).

    Article 

    Google Scholar 

  • Bernstein-Cooper, E. Z. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. V. neutral gas dynamics and kinematics. Astron. J. 148, 35 (2014).

    Article 

    Google Scholar 

  • McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).

    Article 

    Google Scholar 

  • Sand, D. J. et al. Tucana B: a potentially isolated and quenched ultra-faint dwarf galaxy at D ≈ 1.4 Mpc. Astrophys. J. Lett. 935, L17 (2022).

    Article 

    Google Scholar 

  • Young, L. M., van Zee, L., Lo, K. Y., Dohm-Palmer, R. C. & Beierle, M. E. Star formation and the interstellar medium in four dwarf irregular galaxies. Astrophys. J. 592, 111–128 (2003).

    Article 
    CAS 

    Google Scholar 

  • Hargis, J. R. et al. Hubble Space Telescope imaging of Antlia B: star formation history and a new tip of the red giant branch distance. Astrophys. J. 888, 31 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sand, D. J. et al. Antlia B: a faint dwarf galaxy member of the NGC 3109 association. Astrophys. J. Lett. 812, L13 (2015).

    Article 

    Google Scholar 

  • Zoutendijk, S. L. et al. The MUSE-Faint survey. III. No large dark-matter cores and no significant tidal stripping in ultra-faint dwarf galaxies. Preprint https://arxiv.org/abs/2112.09374 (2021).

  • Tully, R. B. et al. The Extragalactic Distance Database. Astron. J. 138, 323–331 (2009).

    Article 

    Google Scholar 

  • McQuinn, K. B. W. et al. Discovery and characterization of two ultrafaint dwarfs outside the halo of the Milky Way: Leo M and Leo K. Astrophys. J. 967, 161 (2024).

    Article 
    CAS 

    Google Scholar 

  • Carlin, J. L. et al. Tidal destruction in a low-mass galaxy environment: the discovery of tidal tails around DDO 44. Astrophys. J. 886, 109 (2019).

    Article 
    CAS 

    Google Scholar 

  • Battaglia, G., Rejkuba, M., Tolstoy, E., Irwin, M. J. & Beccari, G. A wide-area view of the Phoenix dwarf galaxy from Very Large Telescope/FORS imaging. Mon. Not. R. Astron. Soc. 424, 1113–1131 (2012).

    Article 

    Google Scholar 

  • Kacharov, N. et al. Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix. Mon. Not. R. Astron. Soc. 466, 2006–2023 (2017).

    Article 
    CAS 

    Google Scholar 

  • van de Rydt, F., Demers, S. & Kunkel, W. E. Phoenix: an intermediate dwarf galaxy in the Local Group. Astron. J. 102, 130–136 (1991).

    Article 

    Google Scholar 

  • Bouchard, A., Jerjen, H., Da Costa, G. S. & Ott, J. Detection of neutral hydrogen in early-type dwarf galaxies of the Sculptor Group. Astron. J. 130, 2058–2064 (2005).

    Article 
    CAS 

    Google Scholar 

  • Savino, A. et al. The Hubble Space Telescope Survey of M31 Satellite Galaxies. I. RR Lyrae-based distances and refined 3D geometric structure. Astrophys. J. 938, 101 (2022).

    Article 

    Google Scholar 

  • McNanna, M. et al. A search for faint resolved galaxies beyond the Milky Way in DES Year 6: a new faint, diffuse dwarf satellite of NGC 55. Astrophys. J. 961, 126 (2024).

    Article 

    Google Scholar 

  • Simon, J. D. & Geha, M. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007).

    Article 
    CAS 

    Google Scholar 

  • Leaman, R. et al. The comparative chemical evolution of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 767, 131 (2013).

    Article 

    Google Scholar 

  • Taibi, S. et al. The Tucana dwarf spheroidal galaxy: not such a massive failure after all. Astron. Astrophys. 635, A152 (2020).

    Article 
    CAS 

    Google Scholar 

  • Barnes, D. G. & de Blok, W. J. G. On the neutral gas content and environment of NGC 3109 and the Antlia dwarf galaxy. Astron. J. 122, 825–829 (2001).

    Article 

    Google Scholar 

  • Hoffman, G. L. et al. Arecibo H i mapping of a large sample of dwarf irregular galaxies. Astrophys. J. Suppl. Ser. 105, 269–298 (1996).

    Article 
    CAS 

    Google Scholar 

  • Karachentsev, I. D., Makarova, L. N., Tully, R. B., Wu, P.-F. & Kniazev, A. Y. KK258, a new transition dwarf galaxy neighbouring the Local Group. Mon. Not. R. Astron. Soc. 443, 1281–1290 (2014).

    Article 
    CAS 

    Google Scholar 

  • Karachentsev, I. D., Makarova, L. N., Makarov, D. I., Tully, R. B. & Rizzi, L. A new isolated dSph galaxy near the Local Group. Mon. Not. R. Astron. Soc. 447, L85–L89 (2015).

    Article 
    CAS 

    Google Scholar 

  • Karachentsev, I. D., Kniazev, A. Y. & Sharina, M. E. The isolated dSph galaxy KKs3 in the local Hubble flow. Astron. Nachr. 336, 707–714 (2015).

    Article 
    CAS 

    Google Scholar 

  • Baumgardt, H. & Hilker, M. A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon. Not. R. Astron. Soc. 478, 1520–1557 (2018).

    Article 

    Google Scholar 

  • Baumgardt, H., Sollima, A. & Hilker, M. Absolute V-band magnitudes and mass-to-light ratios of Galactic globular clusters. Publ. Astron. Soc. Aust. 37, e046 (2020).

    Article 

    Google Scholar 

  • Baumgardt, H. & Vasiliev, E. Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST, and literature data. Mon. Not. R. Astron. Soc. 505, 5957–5977 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kunder, A. et al. The Milky Way Bulge extra-tidal star survey: BH 261 (AL 3). Astron. J. 167, 21 (2024).

    Article 
    CAS 

    Google Scholar 

  • Simpson, J. D. The most metal-poor Galactic globular cluster: the first spectroscopic observations of ESO280-SC06. Mon. Not. R. Astron. Soc. 477, 4565–4576 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kobulnicky, H. A. et al. Discovery of a new low-latitude Milky Way globular cluster using GLIMPSE. Astron. J. 129, 239–250 (2005).

    Article 
    CAS 

    Google Scholar 

  • Harris, W. E. A new catalog of globular clusters in the Milky Way. Preprint at https://arxiv.org/abs/1012.3224 (2010).

  • Kunder, A., Crabb, R. E., Debattista, V. P., Koch-Hansen, A. J. & Huhmann, B. M. Spectroscopic observations of obscured populations in the inner galaxy: 2MASS-GC02, Terzan 4, and the 200 km s−1 stellar peak. Astron. J. 162, 86 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pallanca, C. et al. Internal kinematics and structure of the bulge globular cluster NGC 6569. Astrophys. J. 950, 138 (2023).

    Article 
    CAS 

    Google Scholar 

  • Souza, S. O. et al. Photo-chemo-dynamical analysis and the origin of the bulge globular cluster Palomar 6. Astron. Astrophys. 656, A78 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kurtev, R., Ivanov, V. D., Borissova, J. & Ortolani, S. Obscured clusters. II. GLIMPSE-C02 – a new metal rich globular cluster in the Milky Way. Astron. Astrophys. 489, 583–587 (2008).

    Article 
    CAS 

    Google Scholar 

  • Strader, J. & Kobulnicky, H. A. A probable new globular cluster in the Galactic disk. Astron. J. 136, 2102–2106 (2008).

    Article 
    CAS 

    Google Scholar 

  • Carraro, G., Zinn, R. & Bidin, C. M. Whiting 1: the youngest globular cluster associated with the Sagittarius dwarf spheroidal galaxy. Astron. Astrophys. 466, 181–189 (2007).

    Article 
    CAS 

    Google Scholar 

  • Taylor, E. et al. EDGE: initial condition files. Zenodo https://doi.org/10.5281/zenodo.16536387 (2025).

  • Continue Reading

  • Ten Years Later, LIGO is a Black-Hole Hunting Machine

    Ten Years Later, LIGO is a Black-Hole Hunting Machine

    On September 14, 2015, a signal arrived on Earth, carrying information about a pair of remote black holes that had spiraled together and merged. The signal had traveled about 1.3 billion years to reach us at the speed of light—but it was not made of light. It was a different kind of signal: a quivering of space-time called gravitational waves first predicted by Albert Einstein 100 years prior. On that day 10 years ago, the twin detectors of the US National Science Foundation Laser Interferometer Gravitational-wave Observatory (NSF LIGO) made the first-ever direct detection of gravitational waves, whispers in the cosmos that had gone unheard until that moment.

    The historic discovery meant that researchers could now sense the universe through three different means. Light waves, such as X-rays, optical, radio, and other wavelengths of light, as well as high-energy particles called cosmic rays and neutrinos, had been captured before, but this was the first time anyone had witnessed a cosmic event through the gravitational warping of space-time. For this achievement, first dreamed up more than 40 years prior, three of the team’s founders won the 2017 Nobel Prize in Physics: MIT’s Rainer Weiss, professor of physics, emeritus (who recently passed away at age 92); Caltech’s Barry Barish, the Ronald and Maxine Linde Professor of Physics, Emeritus; and Caltech’s Kip Thorne, the Richard P. Feynman Professor of Theoretical Physics, Emeritus.

    Today, LIGO, which consists of detectors in both Hanford, Washington and Livingston, Louisiana, routinely observes roughly one black hole merger every three days. LIGO now operates in coordination with two international partners, the Virgo gravitational-wave detector in Italy and KAGRA in Japan. Together, the gravitational-wave-hunting network, known as the LVK (LIGO, Virgo, KAGRA), has captured a total of about 300 black hole mergers, some of which are confirmed while others await further analysis. During the network’s current science run, the fourth since the first run in 2015, the LVK has discovered more than 200 candidate black hole mergers, more than double the number caught in the first three runs.

    LIGO Hanford in Washington and LIGO Livingston in Louisiana.

    The dramatic rise in the number of LVK discoveries over the past decade is owed to several improvements to their detectors—some of which involve cutting-edge quantum precision engineering. The LVK detectors remain by far the most precise rulers for making measurements ever created by humans. The space-time distortions induced by gravitational waves are incredibly miniscule. For instance, LIGO detects changes in space-time smaller than 1/10,000 the width of a proton. That’s 700 trillion times smaller than the width of a human hair.

    “Rai Weiss proposed the concept of LIGO in 1972, and I thought, ‘This doesn’t have much chance at all of working,’” recalls Thorne, an expert on the theory of black holes. “It took me three years of thinking about it on and off and discussing ideas with Rai and Vladimir Braginsky [a Russian physicist], to be convinced this had a significant possibility of success. The technical difficulty of reducing the unwanted noise that interferes with the desired signal was enormous. We had to invent a whole new technology. NSF was just superb at shepherding this project through technical reviews and hurdles.”

    MIT’s Nergis Mavalvala, the Curtis and Kathleen Marble Professor of Astrophysics and dean of the School of Science, says that the challenges the team overcame to make the first discovery are still very much at play. “From the exquisite precision of the LIGO detectors to the astrophysical theories of gravitational-wave sources, to the complex data analyses, all these hurdles had to be overcome, and we continue to improve in all of these areas,” Mavalvala says. As the detectors get better, we hunger for farther, fainter sources. LIGO continues to be a technological marvel.”

    This chart plots discoveries made by the LIGO-Virgo-KAGRA (LVK) network since LIGO’s first detection, in 2015, of gravitational waves emanating from a pair of colliding black holes. The detections consist mainly of black hole mergers, but a handful involve neutron stars (either black hole-neutron star collisions or neutron star-neutron star collisions).

    Credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

    The Clearest Signal Yet

    LIGO’s improved sensitivity is exemplified in a recent discovery of a black hole merger referred to as GW250114 (the numbers denote the date the gravitational-wave signal arrived at Earth: January 14, 2025). The event was not that different from LIGO’s first-ever detection (called GW150914)—both involve colliding black holes about 1.3 billion light-years away with masses between 30 to 40 times that of our Sun. But thanks to 10 years of technological advances reducing instrumental noise, the GW250114 signal is dramatically clearer.

    “We can hear it loud and clear, and that lets us test the fundamental laws of physics,” says LIGO team member Katerina Chatziioannou, Caltech assistant professor of physics and William H. Hurt Scholar, and one of the authors of a new study on GW250114 published in the Physical Review Letters.

    By analyzing the frequencies of gravitational waves emitted by the merger, the LVK team provided the best observational evidence captured to date for what is known as the black hole area theorem, an idea put forth by Stephen Hawking in 1971 that says the total surface areas of black holes cannot decrease. When black holes merge, their masses combine, increasing the surface area. But they also lose energy in the form of gravitational waves. Additionally, the merger can cause the combined black hole to increase its spin, which leads to it having a smaller area. The black hole area theorem states that despite these competing factors, the total surface area must grow in size.

    Later, Hawking and physicist Jacob Bekenstein concluded that a black hole’s area is proportional to its entropy, or degree of disorder. The findings paved the way for later groundbreaking work in the field of quantum gravity, which attempts to unite two pillars of modern physics: general relativity and quantum physics.

    In essence, the LIGO detection allowed the team to “hear” two black holes growing as they merged into one, verifying Hawking’s theorem. (Virgo and KAGRA were offline during this particular observation.) The initial black holes had a total surface area of 240,000 square kilometers (roughly the size of Oregon), while the final area was about 400,000 square kilometers (roughly the size of California)—a clear increase. This is the second test of the black hole area theorem; an initial test was performed in 2021 using data from the first GW150914 signal, but because that data was not as clean, the results had a confidence level of 95 percent compared to 99.999 percent for the new data.

    Thorne recalls Hawking phoning him to ask whether LIGO might be able to test his theorem immediately after he learned of the 2015 gravitational-wave detection. Hawking died in 2018 and sadly did not live to see his theory observationally verified. “If Hawking were alive, he would have reveled in seeing the area of the merged black holes increase,” Thorne says.

    The trickiest part of this type of analysis had to do with determining the final surface area of the merged black hole. The surface areas of pre-merger black holes can be more readily gleaned as the pair spiral together, roiling space-time and producing gravitational waves. But after the black holes coalesce, the signal is not as clear-cut. During this so-called ringdown phase, the final black hole vibrates like a struck bell.

    In the new study, the researchers precisely measured the details of the ringdown phase, which allowed them to calculate the mass and spin of the black hole and, subsequently, determine its surface area. More specifically, they were able, for the first time, to confidently pick out two distinct gravitational-wave modes in the ringdown phase. The modes are like characteristic sounds a bell would make when struck; they have somewhat similar frequencies but die out at different rates, which makes them hard to identify. The improved data for GW250114 meant that the team could extract the modes, demonstrating that the black hole’s ringdown occurred exactly as predicted by math models based on the Teukolsky formalism—devised in 1972 by Saul Teukolsky, now a professor at Caltech and Cornell.

    Another study from the LVK, submitted to Physical Review Letters today, places limits on a predicted third, higher-pitched tone in the GW250114 signal, and performs some of the most stringent tests yet of general relativity’s accuracy in describing merging black holes.


    Continue Reading

  • Mixed export performance seen across goods producers in Asia – S&P Global

    1. Mixed export performance seen across goods producers in Asia  S&P Global
    2. Niche Asian exports wilt because of Trump’s tariffs  Financial Times
    3. Asia must prioritize regional cooperation for economic resilience amid tariff uncertainty  Brookings
    4. Singapore exporters absorbing more than 20% of US tariff costs: Nomura  The Straits Times
    5. Asia Export Hubs Show Robust Activity Despite Trump Tariffs  Bloomberg.com

    Continue Reading

  • NASA Fuel Storage Research Launches Aboard Resupply Mission

    NASA Fuel Storage Research Launches Aboard Resupply Mission

    Space missions rely on cryogenic fluids — extremely cold liquids like liquid hydrogen and oxygen — for both propulsion and life support systems. These fuels must be kept at ultra-low cryogenic temperatures to remain in liquid form; however, solar heating and other sources of heat increase the rate of evaporation of the liquid and cause the pressure in the storage tank to increase. Current storage methods require venting the cryogenic propellant to space to control the pressure in fuel tanks.

    NASA’s Zero Boil-Off Tank Noncondensables (ZBOT-NC) experiment is the continuation of Zero Boil-Off studies gathering crucial data to optimize fuel storage systems for space missions. The experiment will launch aboard Northrop Grumman’s 23rd resupply mission to the International Space Station.

    Even with multilayer insulation, heat unavoidably seeps into cryogenic fuel tanks from surrounding structures and the space environment, causing an increase in the liquid temperature and an associated increase in the evaporation rate. In turn, the pressure inside the tank increases. This process is called “boil-off” and the increase in tank pressure is referred to as “self-pressurization.”

    Venting excess gas to the environment or space when this process occurs is highly undesirable and becomes mission-critical on extended journeys. If crew members used current fuel storage methods for a years-long Mars expedition, all propellant might be lost to boil-off before the trip ends.

    NASA’s ZBOT experiments are investigating active pressure control methods to eliminate wasteful fuel venting. Specifically, active control through the use of jet mixing and other techniques are being evaluated and tested in the ZBOT series of experiments.

    ZBOT-NC further studies how noncondensable gases (NCGs) affect fuel tank behavior when present in spacecraft systems. NCGs don’t turn into liquid under the tank’s operating conditions and can affect tank pressure.

    The investigation, which is led out of Glenn Research Center, will operate inside the Microgravity Science Glovebox aboard the space station to gather data on how NCGs affect volatile liquid behavior in microgravity. It’s part of an effort to advance cryogenic fluid management technologies and help NASA better understand low-gravity fluid behavior.

    Researchers will measure pressure and temperature as they study how these gases change evaporation and condensation rates. Previous studies indicate the gases create barriers that could reduce a tank’s ability to maintain proper pressure control — a potentially serious issue for extended space missions.

    The research directly supports Mars missions and other long-duration space travel by helping engineers design more efficient fuel storage systems and future space depots. The findings may also benefit scientific instruments on space telescopes and probes that rely on cryogenic fluids to maintain the extremely low temperatures needed for operation.

    The investigation could improve tank design models for medical, industrial, and energy production applications that depend on long-term cryogenic storage on Earth.

    Continue Reading