Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).
Article
CAS
PubMed
Google Scholar
Jurkowska, R. Z., Jurkowski, T. P. & Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206–222 (2011).
Article
CAS
PubMed
Google Scholar
Bogdanovic, O. & Veenstra, G. J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549–565 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).
Article
PubMed
PubMed Central
Google Scholar
Ross, S. E. & Bogdanovic, O. TET enzymes, DNA demethylation and pluripotency. Biochem. Soc. Trans. 47, 875–885 (2019).
Article
CAS
PubMed
Google Scholar
Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
Article
CAS
PubMed
Google Scholar
Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).
Article
CAS
PubMed
Google Scholar
Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).
Article
CAS
PubMed
Google Scholar
Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).
Article
PubMed
Google Scholar
Bogdanovic, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–26 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, C. et al. Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep. 12, 1133–1143 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Robertson, K. D. DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139–3155 (2001).
Article
CAS
PubMed
Google Scholar
Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).
Article
CAS
PubMed
Google Scholar
Reichard, J. & Zimmer-Bensch, G. The epigenome in neurodevelopmental disorders. Front. Neurosci. 15, 776809 (2021).
Article
PubMed
PubMed Central
Google Scholar
Ciptasari, U. & van Bokhoven, H. The phenomenal epigenome in neurodevelopmental disorders. Hum. Mol. Genet. 29, R42–R50 (2020).
Article
PubMed
PubMed Central
Google Scholar
Ballestar, E., Sawalha, A. H. & Lu, Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 16, 514–524 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzone, R. et al. The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics 11, 34 (2019).
Article
PubMed
PubMed Central
Google Scholar
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
Article
CAS
PubMed
Google Scholar
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).
Article
CAS
PubMed
Google Scholar
de Mendoza, A., Lister, R. & Bogdanovic, O. Evolution of DNA methylome diversity in eukaryotes. J. Mol. Biol. 432, 1687–1705 (2019).
Article
PubMed
Google Scholar
Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).
Article
CAS
PubMed
Google Scholar
Kumar, S. & Mohapatra, T. Dynamics of DNA methylation and its functions in plant growth and development. Front. Plant Sci. 12, 596236 (2021).
Article
PubMed
PubMed Central
Google Scholar
Salomon, R. & Kaye, A. M. Methylation of mouse DNA in vivo: di- and tripyrimidine sequences containing 5-methylcytosine. Biochim. Biophys. Acta 204, 340–351 (1970).
Article
CAS
PubMed
Google Scholar
Grafstrom, R. H., Yuan, R. & Hamilton, D. L. The characteristics of DNA methylation in an in vitro DNA synthesizing system from mouse fibroblasts. Nucleic Acids Res. 13, 2827–2842 (1985).
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil, V., Ward, R. L. & Hesson, L. B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828 (2014).
Article
PubMed
PubMed Central
Google Scholar
Ziller, M. J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirane, K. et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo, N. et al. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 16, 624 (2015).
Article
PubMed
PubMed Central
Google Scholar
Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).
Article
PubMed
PubMed Central
Google Scholar
De Mendoza, A. et al. The emergence of the brain non-CpG methylation system in vertebrates. Nat. Ecol. Evol. 5, 369–378 (2021).
Article
PubMed
PubMed Central
Google Scholar
Ross, S. E., Angeloni, A., Geng, F. S., de Mendoza, A. & Bogdanovic, O. Developmental remodelling of non-CG methylation at satellite DNA repeats. Nucleic Acids Res. 48, 12675–12688 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross, S. E. et al. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res. 51, 9658–9671 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Klughammer, J. et al. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat. Commun. 14, 232 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross, S. E., Hesselson, D. & Bogdanovic, O. Developmental accumulation of gene body and transposon non-CpG methylation in the zebrafish brain. Front. Cell Dev. Biol. 9, 643603 (2021).
Article
PubMed
PubMed Central
Google Scholar
Fu, Y., Timp, W. & Sedlazeck, F. J. Computational analysis of DNA methylation from long-read sequencing. Nat. Rev. Genet. 26, 620–634 (2025).
Article
PubMed
Google Scholar
Liu, T. & Conesa, A. Profiling the epigenome using long-read sequencing. Nat. Genet. 57, 27–41 (2025).
Article
CAS
PubMed
Google Scholar
Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
He, Y. & Ecker, J. R. Non-CG methylation in the human genome. Annu Rev. Genomics Hum. Genet. 16, 55–77 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan, H. K. et al. DNMT3B shapes the mCA landscape and regulates mCG for promoter bivalency in human embryonic stem cells. Nucleic Acids Res. 47, 7460–7475 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
Article
CAS
PubMed
Google Scholar
Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, X. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods 14, 1055–1062 (2017).
Article
CAS
PubMed
Google Scholar
Giulitti, S. et al. Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat. Cell Biol. 21, 275–286 (2019).
Article
CAS
PubMed
Google Scholar
Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, Y. et al. Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naive state. eLife 7, e29518 (2018).
Article
PubMed
PubMed Central
Google Scholar
Buckberry, S. et al. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 620, 863–872 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).
Article
CAS
PubMed
Google Scholar
Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Arand, J. et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Butcher, L. M. et al. Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells. Nat. Commun. 7, 10458 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Joe, S. & Nam, H. Prediction model construction of mouse stem cell pluripotency using CpG and non-CpG DNA methylation markers. BMC Bioinformatics 21, 175 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichiyanagi, T., Ichiyanagi, K., Miyake, M. & Sasaki, H. Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 41, 738–745 (2013).
Article
CAS
PubMed
Google Scholar
Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomizawa, S. et al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138, 811–820 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Demond, H., Khan, S., Castillo-Fernandez, J., Hanna, C. W. & Kelsey, G. Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol. Cell Biol. 26, 2 (2025).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo, N. et al. Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells. Nat. Commun. 15, 3266 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu, B. et al. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS ONE 15, e0241698 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo-Fernandez, J. et al. Increased transcriptome variation and localised DNA methylation changes in oocytes from aged mice revealed by parallel single-cell analysis. Aging Cell 19, e13278 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, J. H., Park, S. J. & Nakai, K. Differential landscape of non-CpG methylation in embryonic stem cells and neurons caused by DNMT3s. Sci. Rep. 7, 11295 (2017).
Article
PubMed
PubMed Central
Google Scholar
Jeltsch, A., Adam, S., Dukatz, M., Emperle, M. & Bashtrykov, P. Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity. J. Mol. Biol. 433, 167186 (2021).
Article
CAS
PubMed
Google Scholar
Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).
Article
CAS
PubMed
Google Scholar
Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).
Article
CAS
PubMed
Google Scholar
Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309 (2020).
Article
CAS
PubMed
Google Scholar
Hamagami, N. et al. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. Mol. Cell 83, 1412–1428 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Angeloni, A. et al. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat. Commun. 15, 1977 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017).
Article
PubMed
PubMed Central
Google Scholar
Tillotson, R. & Bird, A. The molecular basis of MeCP2 function in the brain. J. Mol. Biol. 432, 1602–1623 (2019).
Article
PubMed
Google Scholar
Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rube, H. T. et al. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nat. Commun. 7, 11025 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).
Article
CAS
PubMed
Google Scholar
Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).
Article
CAS
PubMed
Google Scholar
Tillotson, R. et al. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol. Cell 81, 1260–1275 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavery, L. A. et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, e52981 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, J. et al. Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. eLife 11, e66909 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, Y. et al. Exploring the complexity of MECP2 function in Rett syndrome. Nat. Rev. Neurosci. 26, 379–398 (2025).
Article
CAS
PubMed
Google Scholar
Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Santistevan, N. J., Ford, C. T., Gilsdorf, C. S. & Grinblat, Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am. J. Med. Genet. B Neuropsychiatr. Genet. 195, e32981 (2024).
Article
CAS
PubMed
Google Scholar
Moore, J. R. et al. MeCP2 and non-CG DNA methylation stabilize the expression of long genes that distinguish closely related neuron types. Nat. Neurosci. 28, 1185–1198 (2025).
Article
CAS
PubMed
Google Scholar
Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, H. et al. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature 624, 366–377 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou, J. et al. Human body single-cell atlas of 3D genome organization and DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2025.03.23.644697 (2025).
Goll, M. G. & Halpern, M. E. DNA methylation in zebrafish. Prog. Mol. Biol. Transl. Sci. 101, 193–218 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin, L. M., Schnoor, M. & Jun, C. D. Structural characteristics, binding partners and related diseases of the calponin homology (CH) domain. Front. Cell Dev. Biol. 8, 342 (2020).
Article
PubMed
PubMed Central
Google Scholar
Wu, S. F., Zhang, H. & Cairns, B. R. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 21, 578–589 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong, Y. et al. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl Acad. Sci. USA 101, 8011–8016 (2004).
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris, K. D., Lloyd, J. P. B., Domb, K., Zilberman, D. & Zemach, A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 12, 62 (2019).
Article
PubMed
PubMed Central
Google Scholar
Cingolani, P. et al. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genomics 14, 666 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Royle, J. W., Hurwood, D., Sadowski, P. & Dudley, K. J. Non-CG DNA methylation marks the transition from pupa to adult in Helicoverpa armigera. Insect Mol. Biol. 33, 493–502 (2024).
Article
CAS
PubMed
Google Scholar
Gu, Z. et al. Whole-genome bisulfite sequencing reveals the function of DNA methylation in the allotransplantation immunity of pearl oysters. Front. Immunol. 14, 1247544 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang, Y., Zheng, Y., Sun, L. & Chen, M. Genome-wide DNA methylation signatures of sea cucumber Apostichopus japonicus during environmental induced aestivation. Genes (Basel) 11, 1020 (2020).
Article
CAS
PubMed
Google Scholar
Song, X. et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res. 24, 445–457 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz, N. K. E. et al. Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Sci. Rep. 8, 16462 (2018).
Article
PubMed
PubMed Central
Google Scholar
De Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).
Article
PubMed
PubMed Central
Google Scholar
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schartl, M. et al. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 634, 96–103 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouil, Q. & Baulcombe, D. C. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 12, e1006526 (2016).
Article
PubMed
PubMed Central
Google Scholar
Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).
Article
CAS
PubMed
Google Scholar
Kazazian, H. H. Jr Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).
Article
CAS
PubMed
Google Scholar
Tooley, K. B. et al. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 16, 45 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Derks, M. F. et al. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17, 332 (2016).
Article
PubMed
PubMed Central
Google Scholar
Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Novo, C. L. et al. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat. Commun. 13, 3525 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo, W., Zhang, M. Q. & Wu, H. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements. Sci. Rep. 6, 32207 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Olova, N. et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 19, 33 (2018).
Article
PubMed
PubMed Central
Google Scholar
Vaisvila, R. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 31, 1280–1289 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).
Article
CAS
PubMed
Google Scholar
Wang, M. et al. Engineered APOBEC3C sequencing enables bisulfite-free and direct detection of DNA methylation at a single-base resolution. Anal. Chem. 95, 1556–1565 (2023).
CAS
PubMed
Google Scholar
Wang, T. et al. Bisulfite-free sequencing of 5-hydroxymethylcytosine with APOBEC-coupled epigenetic sequencing (ACE-seq). Methods Mol. Biol. 2198, 349–367 (2021).
Article
CAS
PubMed
Google Scholar
Han, Y. et al. Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics 17, 1195–1204 (2022).
Article
PubMed
Google Scholar
Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Angeloni, A., Ferguson, J. & Bogdanovic, O. Nanopore sequencing and data analysis for base-resolution genome-wide 5-methylcytosine profiling. Methods Mol. Biol. 2458, 75–94 (2022).
Article
CAS
PubMed
Google Scholar
Goldsmith, C. et al. Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level. Sci. Rep. 11, 8032 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liau, Y. et al. Low-pass nanopore sequencing for measurement of global methylation levels in plants. BMC Genomics 25, 1235 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong, Y. et al. Critical assessment of nanopore sequencing for the detection of multiple forms of DNA modifications. Preprint at bioRxiv https://doi.org/10.1101/2024.11.19.624260 (2024).
Ni, P. et al. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat. Commun. 12, 5976 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, H. X. et al. Accurate cross-species 5mC detection for Oxford Nanopore sequencing in plants with DeepPlant. Nat. Commun. 16, 3227 (2025).
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes, E. E. et al. Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS ONE 9, e93933 (2014).
Article
PubMed
PubMed Central
Google Scholar
Hong, E. E., Okitsu, C. Y., Smith, A. D. & Hsieh, C. L. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol. Cell. Biol. 33, 2683–2690 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kint, S., De Spiegelaere, W., De Kesel, J., Vandekerckhove, L. & Van Criekinge, W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE 13, e0199091 (2018).
Article
PubMed
PubMed Central
Google Scholar
Dou, X. et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res. 29, 1622–1634 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guitton, R., Nido, G. S. & Tzoulis, C. No evidence of extensive non-CpG methylation in mtDNA. Nucleic Acids Res. 50, 9190–9194 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong, W. et al. Benchmarking DNA methylation analysis of 14 alignment algorithms for whole genome bisulfite sequencing in mammals. Comput Struct. Biotechnol. J. 20, 4704–4716 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).
Article
PubMed
PubMed Central
Google Scholar
Teissandier, A., Servant, N., Barillot, E. & Bourc’his, D. Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mob. DNA 10, 52 (2019).
Article
PubMed
PubMed Central
Google Scholar
Mizuguchi, T. et al. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J. Hum. Genet. 64, 191–197 (2019).
Article
CAS
PubMed
Google Scholar
Stevanovski, I. et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci. Adv. 8, eabm5386 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021).
Article
CAS
PubMed
Google Scholar
Delahaye, C. & Nicolas, J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE 16, e0257521 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Catoni, M., Tsang, J. M., Greco, A. P. & Zabet, N. R. DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 46, e114 (2018).
PubMed
PubMed Central
Google Scholar
Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cree, S. L. et al. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett. 590, 2870–2883 (2016).
Article
CAS
PubMed
Google Scholar
Jin, J. et al. The effects of cytosine methylation on general transcription factors. Sci. Rep. 6, 29119 (2016).
Article
PubMed
PubMed Central
Google Scholar
Abhishek, S., Nakarakanti, N. K., Deeksha, W. & Rajakumara, E. Mechanistic insights into recognition of symmetric methylated cytosines in CpG and non-CpG DNA by UHRF1 SRA. Int. J. Biol. Macromol. 170, 514–522 (2021).
Article
CAS
PubMed
Google Scholar
Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).
Article
CAS
PubMed
Google Scholar
Roth, G. V., Gengaro, I. R. & Qi, L. S. Precision epigenetic editing: technological advances, enduring challenges, and therapeutic applications. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2024.07.007 (2024).
Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).
Article
CAS
PubMed
Google Scholar
Domb, K. et al. DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc. Natl Acad. Sci. USA 117, 33700–33710 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaari, R. et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nat. Commun. 10, 1613 (2019).
Article
PubMed
PubMed Central
Google Scholar
Ikeda, Y. et al. Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant Cell Physiol. 59, 2421–2431 (2018).
CAS
PubMed
Google Scholar
Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bewick, A. J. et al. Diversity of cytosine methylation across the fungal tree of life. Nat. Ecol. Evol. 3, 479–490 (2019).
Article
PubMed
PubMed Central
Google Scholar
Shi, J. et al. DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora. IET Syst. Biol. 18, 92–102 (2024).
Article
PubMed
PubMed Central
Google Scholar
Nai, Y. S., Huang, Y. C., Yen, M. R. & Chen, P. Y. Diversity of fungal DNA methyltransferases and their association with DNA methylation patterns. Front. Microbiol. 11, 616922 (2020).
Article
PubMed
Google Scholar
Chen, Y. Y. et al. DNA methylation-dependent epigenetic regulation of Verticillium dahliae virulence in plants. aBIOTECH 4, 185–201 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
So, K. K. et al. Global DNA methylation in the chestnut blight fungus Cryphonectria parasitica and genome-wide changes in DNA methylation accompanied with sectorization. Front. Plant Sci. 9, 103 (2018).
Article
PubMed
PubMed Central
Google Scholar
Malagnac, F. et al. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91, 281–290 (1997).
Article
CAS
PubMed
Google Scholar
Sarre, L. A., Gastellou Peralta, G. A., Romero Charria, P., Ovchinnikov, V. & de Mendoza, A. Repressive cytosine methylation is a marker of viral gene transfer across divergent eukaryotes. Mol. Biol. Evol. 42, msaf176 (2025).
Article
CAS
PubMed
PubMed Central
Google Scholar
De Mendoza, A. et al. Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons. Nat. Commun. 9, 1341 (2018).
Article
PubMed
PubMed Central
Google Scholar
Sarre, L. A. et al. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. Sci. Adv. 10, eado6406 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Huff, J. T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tse, O. Y. O. et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc. Natl Acad. Sci. USA 118, e2019768118 (2021).
Article
PubMed
PubMed Central
Google Scholar
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni, O. et al. Comprehensive benchmarking of tools for nanopore-based detection of DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2024.11.09.622763 (2024).