Ferguson-Noel N, Armour NK, Noormohammadi AH, El-Gazzar M, Bradbury JM. Mycoplasmosis. In: Swayne DE, editor. Diseases of Poultry. 14th ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2020. p. 907–65.
Volokhov DV, Grózner D, Gyuranecz M, Ferguson-Noel N, Gao Y, Bradbury JM, et al. Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese (Anser anser domesticus) with reproductive pathology. Int J Syst Evol Microbiol. 2020;70:2369–81. https://doi.org/10.1099/ijsem.0.004052.
Google Scholar
Sawicka-Durkalec A, Tomczyk G, Kursa O, Stenzel T, Gyuranecz M. Evidence of Mycoplasma spp. Transmission by migratory wild geese. Poult Sci. 2022;101:101526. https://doi.org/10.1016/j.psj.2021.101526.
Google Scholar
Polak-Vogelzang AA. Survival of Mycoplasma gallisepticum in mains water. Avian Pathol. 1977;6:93–5. https://doi.org/10.1080/03079457708418215.
Google Scholar
Marois C, Savoye C, Kobisch M, Kempf I. A reverse transcription-PCR assay to detect viable Mycoplasma synoviae in poultry environmental samples. Vet Microbiol. 2002;89:17–28. https://doi.org/10.1016/S0378-1135(02)00159-1.
Google Scholar
Marois C, Dufour-Gesbert F, Kempf I. Polymerase chain reaction for detection of Mycoplasma gallisepticum in environmental samples. Avian Pathol. 2002;31:163–8. https://doi.org/10.1080/03079450120118658.
Google Scholar
Marois C, Picault J-P, Kobisch M, Kempf I. Experimental evidence of indirect transmission of Mycoplasma synoviae. Vet Res. 2005;36:759–69. https://doi.org/10.1051/vetres:2005031.
Google Scholar
Münster P, Kemper N. Long-term analysis of drinking water quality in poultry and pig farms in Northwest Germany. Front Anim Sci. 2024;5:1467287. https://doi.org/10.3389/fanim.2024.1467287.
Google Scholar
Elmberg J, Berg C, Lerner H, Waldenström J, Hessel R. Potential disease transmission from wild geese and swans to livestock, poultry and humans : a review of the scientific literature from a one health perspective. Infect Ecol Epidemiol. 2017;7. https://doi.org/10.1080/20008686.2017.1300450.
Abulreesh HH, Paget TA, Goulder R. Waterfowl and the bacteriological quality of amenity ponds. J Water Health. 2004;2:183–9. https://doi.org/10.2166/wh.2004.0016.
Google Scholar
Gonzalez JM, Aranda B. Microbial growth under limiting Conditions-Future perspectives. Microorganisms. 2023;11:1641. https://doi.org/10.3390/microorganisms11071641.
Google Scholar
Arana I, Muela A, Orruño M, Seco C, Garaizabal I, Barcina I. Effect of temperature and starvation upon survival strategies of Pseudomonas fluorescens CHA0: comparison with Escherichia coli. FEMS Microbiol Ecol. 2010;74:500–9. https://doi.org/10.1111/j.1574-6941.2010.00979.x.
Google Scholar
Nedwell DB. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol. 2006;30:101–11. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x.
Google Scholar
Marmion M, Macori G, Ferone M, Whyte P, Scannell AGM. Survive and thrive: control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. Int J Food Microbiol. 2022;368:109612. https://doi.org/10.1016/j.ijfoodmicro.2022.109612.
Google Scholar
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature matters: bacterial response to temperature change. J Microbiol. 2023;61:343–57. https://doi.org/10.1007/s12275-023-00031-x.
Google Scholar
Citti C, Blanchard A. Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends Microbiol. 2013;21:196–203. https://doi.org/10.1016/j.tim.2013.01.003.
Google Scholar
Rocha EPC, Blanchard A. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res. 2002;30:2031–42. https://doi.org/10.1093/nar/30.9.2031.
Google Scholar
Katz SD. The Streak Plate Protocol. Am Soc Microbiol. 2008;1–10. https://asm.org/asm/media/protocol-images/the-streak-plate-protocol.pdf.
Grózner D, Sulyok KM, Kreizinger Z, Rónai Z, Jánosi S, Turcsányi I, et al. Detection of Mycoplasma anatis, M. anseris, M. cloacale and Mycoplasma sp. 1220 in waterfowl using species-specific PCR assays. PLoS ONE. 2019;14:e0219071. https://doi.org/10.1371/journal.pone.0219071.
Google Scholar
Gioia G, Werner B, Nydam DV, Moroni P. Validation of a Mycoplasma molecular diagnostic test and distribution of Mycoplasma species in bovine milk among new York state dairy farms. J Dairy Sci. 2016;99:4668–77. https://doi.org/10.3168/jds.2015-10724.
Google Scholar
Hannan PCT. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary Mycoplasma species. Vet Res. 2000;31:373–95. https://doi.org/10.1051/vetres:2000100.
Google Scholar
Bekő K, Grózner D, Mitter A, Udvari L, Földi D, Wehmann E, et al. Development and evaluation of temperature-sensitive Mycoplasma anserisalpingitidis clones as vaccine candidates. Avian Pathol. 2022;51:535–49. https://doi.org/10.1080/03079457.2022.2102967.
Google Scholar
Terry M. Therneau, Patricia M. Grambsch. Modeling Survival Data: Extending the Cox Model. New York: Springer; 2000.
Tang Y, Horikoshi M, Li W. Ggfortify: unified interface to visualize statistical results of popular R packages. R J. 2016;8:474. https://doi.org/10.32614/RJ-2016-060.
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. https://doi.org/10.1007/978-3-319-24277-4.
R Core Team. R: A Language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing; 2025.
Posit team. RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston: MA; 2025. http://www.posit.co/.
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol. 2012;91–210. https://doi.org/10.1016/B978-0-12-398264-3.00002-4.
Nagatomo H. Comparative studies of the persistence of animal Mycoplasmas under different environmental conditions. Vet Microbiol. 2001;82:223–32. https://doi.org/10.1016/S0378-1135(01)00385-6.
Google Scholar
Justice-Allen A, Trujillo J, Corbett R, Harding R, Goodell G, Wilson D. Survival and replication of Mycoplasma species in recycled bedding sand and association with mastitis on dairy farms in Utah. J Dairy Sci. 2010;93:192–202. https://doi.org/10.3168/jds.2009-2474.
Google Scholar
Nouvel LX, Sirand-Pugnet P, Marenda MS, Sagné E, Barbe V, Mangenot S, et al. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping Mycoplasma diversity. BMC Genomics. 2010;11:86. https://doi.org/10.1186/1471-2164-11-86.
Google Scholar
Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE, Ferguson-Noel N, et al. Ultrafast evolution and loss of crisprs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet. 2012;8:e1002511. https://doi.org/10.1371/journal.pgen.1002511.
Google Scholar
Bekő K, Nagy EZ, Grózner D, Kreizinger Z, Gyuranecz M. Biofilm formation and its impact on environmental survival and antibiotic resistance of Mycoplasma anserisalpingitidis strains. Acta Vet Hung. 2022;70:184–91. https://doi.org/10.1556/004.2022.00029.
Google Scholar
Rossi C, Chaves-López C, Serio A, Goffredo E, Cenci Goga BT, Paparella A. Influence of incubation conditions on biofilm formation by Pseudomonas fluorescens isolated from dairy products and dairy manufacturing plants. Ital J Food Saf. 2016;5. https://doi.org/10.4081/ijfs.2016.5793.
De Plano LM, Caratozzolo M, Conoci S, Guglielmino SPP, Franco D. Impact of nutrient starvation on biofilm formation in Pseudomonas aeruginosa: an analysis of growth, adhesion, and Spatial distribution. Antibiotics. 2024;13:987. https://doi.org/10.3390/antibiotics13100987.
Google Scholar
Catania S, Bottinelli M, Fincato A, Tondo A, Matucci A, Nai G, et al. Pathogenic avian Mycoplasmas show phenotypic differences in their biofilm forming ability compared to non-pathogenic species in vitro. Biofilm. 2024;7:100190. https://doi.org/10.1016/j.bioflm.2024.100190.
Google Scholar
Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae. 2015;7:22–33.
Google Scholar
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev. 2010;34:476–95. https://doi.org/10.1111/j.1574-6976.2010.00213.x.
Google Scholar
Hazan R, Schoemann M, Klutstein M. Endurance of extremely prolonged nutrient prevention across kingdoms of life. iScience. 2021;24:102745. https://doi.org/10.1016/j.isci.
Google Scholar
Chernov VM, Gogolev YV, Mukhametshina NE, Abdrakhimov FA, Chernova OA. Mycoplasma adaptation to biogenic and abiogenic stessful factors; Acholeplasma laidlawii nannotransformation and minibodies. Prog Nucl Energy 6 Biol Sci. 2003;396:417–20. https://doi.org/10.0012/4966/04/0506-0251.
Demina IA, Serebryakova MV, Ladygina VG, Rogova MA, Kondratov IG, Renteeva AN, et al. Proteomic characterization of Mycoplasma gallisepticum nanoforming. Biochem (Moscow). 2010;75:1252–7. https://doi.org/10.1134/S0006297910100068.
Google Scholar
Chernov VM, Chernova OA, Gorshkov OV, Muzykantov AA, Shaimardanova GF, Pel’nikevich AD, et al. Adaptation of Mycoplasma gallisepticum to unfavorable growth conditions: changes in morphological and physiological characteristics. Microbiol (N Y). 2008;77:691–4. https://doi.org/10.1134/S0026261708060064.
Google Scholar
Chernov VM, Chernova OA, Medvedeva ES, Sorvina AI, Davydova MN, Rogova MA, et al. Responses of Acholeplasma Laidlawii PG8 cells to cold shock and oxidative stress: proteomic analysis and stress-reactive Mycoplasma proteins. Dokl Biochem Biophys. 2010;432:126–30. https://doi.org/10.1134/S1607672910030099.
Google Scholar
Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking water and biofilm as sources of antimicrobial resistance in Free-Range organic broiler farms. Antibiotics. 2024;13:808. https://doi.org/10.3390/antibiotics13090808.
Google Scholar
Mustedanagic A, Matt M, Weyermair K, Schrattenecker A, Kubitza I, Firth CL, et al. Assessment of microbial quality in poultry drinking water on farms in Austria. Front Vet Sci. 2023;10:1254442. https://doi.org/10.3389/fvets.2023.1254442.
Google Scholar
Kapperud G, Skjerve E, Vik L, Hauge K, Lysaker A, Aalmen I, et al. Epidemiological investigation of risk factors for Campylobacter colonization in Norwegian broiler flocks. Epidemiol Infect. 1993;111:245–55. https://doi.org/10.1017/s0950268800056958.
Google Scholar
Sparks NHC. The role of the water supply system in the infection and control of Campylobacter in chicken. Worlds Poult Sci J. 2009;65:459–74. https://doi.org/10.1017/S0043933909000324.
Google Scholar
Gbylik-Sikorska M, Posyniak A, Sniegocki T, Sell B, Gajda A, Sawicka A, et al. Influence of enrofloxacin traces in drinking water to doxycycline tissue pharmacokinetics in healthy and infected by Mycoplasma gallisepticum broiler chickens. Food Chem Toxicol. 2016;90:123–9. https://doi.org/10.1016/j.fct.2016.02.006.
Google Scholar