Pathogenesis, prevention, and therapeutic advances in hepatitis B, C, and D | Virology Journal

  • Cooke GS, Flower B, Cunningham E, et al. Progress towards elimination of viral hepatitis: a lancet gastroenterology & hepatology commission update. Lancet Gastroenterol Hepatol. 2024;9(4):346–65.

    PubMed 

    Google Scholar 

  • Terrault NA, Levy MT, Cheung KW, Jourdain G. Viral hepatitis and pregnancy. Nat Reviews Gastroenterol Hepatol. 2021;18(2):117–30.

    Google Scholar 

  • WHO. Global health sector strategy on viral hepatitis 2016–2021. Towards ending viral hepatitis. 2016; https://www.who.int/publications/i/item/WHO-HIV-2016.06

  • Odenwald MA, Paul S. Viral hepatitis: past, present, and future. World J Gastroenterol. 2022;28(14):1405–29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Castaneda D, Gonzalez AJ, Alomari M, Tandon K, Zervos XB. From hepatitis A to E: A critical review of viral hepatitis. World J Gastroenterol. 2021;27(16):1691–715.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitzmaurice C, Allen C, Barber RM, et al. Global, regional, and National cancer incidence, mortality, years of life lost, years lived with disability, and Disability-Adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3(4):524–48.

    PubMed 

    Google Scholar 

  • Wen B, Te L, Bai C, et al. Relative contribution of hepatitis B and C viruses in primary liver cancer in china: A systematic review and meta-analysis. J Infect. 2024;89(6):106298.

    PubMed 

    Google Scholar 

  • Chan SL, Wong VW, Qin S, Chan HL. Infection and cancer: the case of hepatitis B. J Clin Oncology: Official J Am Soc Clin Oncol. 2016;34(1):83–90.

    Google Scholar 

  • Bogliotti Y, Vander Roest M, Mattis AN, et al. Clinical application of induced Hepatocyte-like cells produced from mesenchymal stromal cells: A literature review. Cells. 2022;11:13.

    Google Scholar 

  • Hamburg-Shields E, Prasad M. Infectious hepatitis in pregnancy. Clin Obstet Gynecol. 2020;63(1):175–92.

    PubMed 

    Google Scholar 

  • WHO, Hepatitis B. 2024; https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

  • Global prevalence. treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol. 2018;3(6):383–403.

    Google Scholar 

  • WHO. Guidelines for the prevention, diagnosis, care and treatment for people with chronic hepatitis B infection. 2024; https://www.who.int/publications/i/item/9789240090903

  • McMahon BJ. The natural history of chronic hepatitis B virus infection. Semin Liver Dis. 2004;24(Suppl 1):17–21.

    PubMed 

    Google Scholar 

  • Veronese P, Dodi I, Esposito S, Indolfi G. Prevention of vertical transmission of hepatitis B virus infection. World J Gastroenterol. 2021;27(26):4182–93.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Indolfi G, Easterbrook P, Dusheiko G, et al. Hepatitis B virus infection in children and adolescents. Lancet Gastroenterol Hepatol. 2019;4(6):466–76.

    PubMed 

    Google Scholar 

  • Lu H, Cao W, Zhang L, et al. Effects of hepatitis B virus infection and strategies for preventing mother-to-child transmission on maternal and fetal T-cell immunity. Front Immunol. 2023;14:1122048.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol. 2022;22(1):19–32.

    PubMed 

    Google Scholar 

  • Hillis WD. VIRAL HEPATITIS ASSOCIATED WITH SUB-HUMAN PRIMATES. Transfusion. 1963;3:445–54.

    PubMed 

    Google Scholar 

  • Walter E, Keist R, Niederöst B, Pult I, Blum HE. Hepatitis B virus infection of Tupaia hepatocytes in vitro and in vivo. Hepatology (Baltimore MD). 1996;24(1):1–5.

    PubMed 

    Google Scholar 

  • Li J, Shi TD, Han JF, et al. A systematic study of Tupaia as a model for human acute hepatitis B infection. J Vet Med Sci. 2021;83(6):1004–11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haering C, McMahon B, Harris A, et al. Hepatitis B virus elimination status and strategies in circumpolar countries, 2020. Int J Circumpolar Health. 2021;80(1):1986975.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol. 2022;13:1075916.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: stopping nucs, adding interferon or new drug development? J Hepatol. 2022;76(6):1249–62.

    PubMed 

    Google Scholar 

  • Jeng WJ, Lok ASF. What will it take to cure hepatitis B? Hepatol Commun 2023;7(4).

  • Lok AS, Zoulim F, Dusheiko G, Ghany MG. Hepatitis B cure: from discovery to regulatory approval. Hepatology (Baltimore MD). 2017;66(4):1296–313.

    PubMed 

    Google Scholar 

  • Nassal M. HBV cccdna: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64(12):1972–84.

    PubMed 

    Google Scholar 

  • Khanam A, Chua JV, Kottilil S. Immunopathology of chronic hepatitis B infection: role of innate and adaptive immune response in disease progression. Int J Mol Sci 2021;22(11).

  • Peeridogaheh H, Meshkat Z, Habibzadeh S, et al. Current concepts on Immunopathogenesis of hepatitis B virus infection. Virus Res. 2018;245:29–43.

    PubMed 

    Google Scholar 

  • Zhang L, Zhang F, Ma Z, Jin J. Hepatitis B virus infection, infertility, and assisted reproduction. J Zhejiang Univ Sci B. 2024;25(8):672–85.

    PubMed 

    Google Scholar 

  • Thimme R, Bertoletti A, Iannacone M. Beyond exhaustion: the unique characteristics of CD8(+) T cell dysfunction in chronic HBV infection. Nat Rev Immunol. 2024;24(11):775–6.

    PubMed 

    Google Scholar 

  • Panduro A, Roman S, Laguna-Meraz S, Jose-Abrego A, Hepatitis B, Virus Genotype H. Epidemiological, molecular, and clinical characteristics in Mexico. Viruses 2023;15(11).

  • Dong Z, Li JR, Zhao ZX, et al. Molecular epidemiology of hepatitis B virus genotypes and subgenotypes in ethnic minority populations, Yunnan province, China. Epidemiol Infect. 2021;150:e11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011;3(7).

  • Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to Heparan sulfate proteoglycans. Hepatology (Baltimore MD). 2007;46(6):1759–68.

    PubMed 

    Google Scholar 

  • Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol. 2008;10(1):122–33.

    PubMed 

    Google Scholar 

  • Herrscher C, Roingeard P, Blanchard E. Hepatitis B virus entry into cells. Cells 2020;9(6).

  • Verrier ER, Colpitts CC, Bach C, et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology (Baltimore MD). 2016;63(1):35–48.

    PubMed 

    Google Scholar 

  • Yan H, Zhong G, Xu G et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012;3.

  • Asami J, Kimura KT, Fujita-Fujiharu Y, et al. Structure of the bile acid transporter and HBV receptor NTCP. Nature. 2022;606(7916):1021–6.

    PubMed 

    Google Scholar 

  • Zhang Z, Zhang Q, Zhang Y, et al. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: opportunities for developing novel therapeutics. Biochem Pharmacol. 2024;219:115956.

    PubMed 

    Google Scholar 

  • Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr. 2012;70:105–68.

    PubMed 

    Google Scholar 

  • Wang J, Qu B, Zhang F, et al. Stem Cell-Derived Hepatocyte-Like cells as model for viral hepatitis research. Stem Cells Int. 2019;2019:9605252.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwamoto M, Saso W, Sugiyama R, et al. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci USA. 2019;116(17):8487–92.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia Y, Guo H. Hepatitis B virus cccdna: formation, regulation and therapeutic potential. Antiviral Res. 2020;180:104824.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raimondo G, Locarnini S, Pollicino T, Levrero M, Zoulim F, Lok AS. Update of the statements on biology and clinical impact of occult hepatitis B virus infection. J Hepatol. 2019;71(2):397–408.

    PubMed 

    Google Scholar 

  • Martinez MG, Boyd A, Combe E, Testoni B, Zoulim F. Covalently closed circular DNA: the ultimate therapeutic target for curing HBV infections. J Hepatol. 2021;75(3):706–17.

    PubMed 

    Google Scholar 

  • Jeng WJ, Papatheodoridis GV, Lok ASF, Hepatitis B. Lancet (London England). 2023;401(10381):1039–52.

    PubMed 

    Google Scholar 

  • Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol. 2024;14:1407434.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res. 2020;182:104925.

    PubMed 

    Google Scholar 

  • Hu J, Liu K. Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses 2017;9(3).

  • Brakenhoff SM, de Knegt RJ, van Campenhout MJH et al. End-of-treatment HBsAg, HBcrAg and HBV RNA predict the risk of off-treatment ALT flares in chronic hepatitis B patients. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. 2023;56(1):31–39.

  • Zoulim F, Carosi G, Greenbloom S, et al. Quantification of HBsAg in nucleos(t)ide-naïve patients treated for chronic hepatitis B with Entecavir with or without Tenofovir in the BE-LOW study. J Hepatol. 2015;62(1):56–63.

    PubMed 

    Google Scholar 

  • Brunetto MR. A new role for an old marker, HBsAg. J Hepatol. 2010;52(4):475–7.

    PubMed 

    Google Scholar 

  • Sonneveld MJ, Chiu SM, Park JY, et al. Lower pretreatment HBV DNA levels are associated with better off-treatment outcomes after nucleo(s)tide analogue withdrawal in patients with HBeAg-negative chronic hepatitis B: A multicentre cohort study. JHEP Reports: Innov Hepatol. 2023;5(8):100790.

    Google Scholar 

  • Qiu Y, Tang Q, Liu XQ, Xue YL, Zeng Y, Hu P. Hepatitis B core-related antigen as a promising serological marker for monitoring hepatitis B virus cure. World J Hepatol. 2025;17(1):98658.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Y, Jiang M, Xue J, Yan H, Liang X. Serum HBV RNA quantification: useful for monitoring natural history of chronic hepatitis B infection. BMC Gastroenterol. 2019;19(1):53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu F, Wang J, Chen X, Xu D, Xia N. Potential use of serum HBV RNA in antiviral therapy for chronic hepatitis B in the era of nucleos(t)ide analogs. Front Med. 2017;11(4):502–8.

    PubMed 

    Google Scholar 

  • Mak LY, Boettler T, Gill US. HBV biomarkers and their role in guiding treatment decisions. Semin Liver Dis. 2024;44(4):474–91.

    PubMed 

    Google Scholar 

  • Busch K, Thimme R. Natural history of chronic hepatitis B virus infection. Med Microbiol Immunol. 2015;204(1):5–10.

    PubMed 

    Google Scholar 

  • Mazzaro C, Adinolfi LE, Pozzato G et al. Extrahepatic Manifestations of Chronic HBV Infection and the Role of Antiviral Therapy. Journal of clinical medicine. 2022;11(21).

  • Cacoub P, Asselah T, Hepatitis B. Virus infection and Extra-Hepatic manifestations: A systemic disease. Am J Gastroenterol. 2022;117(2):253–63.

    PubMed 

    Google Scholar 

  • Baig S, Alamgir M. The extrahepatic manifestations of hepatitis B virus. J Coll Physicians Surg Pak. 2008;18(7):451–7.

    PubMed 

    Google Scholar 

  • Global change in. Hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. Lancet Gastroenterol Hepatol. 2022;7(5):396–415.

    Google Scholar 

  • WHO, Hepatitis C. 2024; https://www.who.int/news-room/fact-sheets/detail/hepatitis-c

  • Martinello M, Solomon SS, Terrault NA, Dore GJ, Hepatitis C. Lancet (London England). 2023;402(10407):1085–96.

    PubMed 

    Google Scholar 

  • Morozov VA, Lagaye S. Hepatitis C virus: morphogenesis, infection and therapy. World J Hepatol. 2018;10(2):186–212.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Midgard H, Weir A, Palmateer N, et al. HCV epidemiology in high-risk groups and the risk of reinfection. J Hepatol. 2016;65(1 Suppl):S33–45.

    PubMed 

    Google Scholar 

  • Graham CS, Swan T. A path to eradication of hepatitis C in low- and middle-income countries. Antiviral Res. 2015;119:89–96.

    PubMed 

    Google Scholar 

  • Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology (Baltimore MD). 2014;59(1):318–27.

    PubMed 

    Google Scholar 

  • Pawlotsky JM, Tsakiris L, Roudot-Thoraval F, et al. Relationship between hepatitis C virus genotypes and sources of infection in patients with chronic hepatitis C. J Infect Dis. 1995;171(6):1607–10.

    PubMed 

    Google Scholar 

  • Zein NN. Clinical significance of hepatitis C virus genotypes. Clin Microbiol Rev. 2000;13(2):223–35.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sallam M, Khalil R. Contemporary insights into hepatitis C virus: A comprehensive review. Microorganisms 2024;12(6).

  • Martinez MA, Franco S. Therapy implications of hepatitis C virus genetic diversity. Viruses 2020;13(1).

  • Tsukiyama-Kohara K, Kohara M, Hepatitis C, Virus. Viral quasispecies and genotypes. Int J Mol Sci 2017;19(1).

  • Manns MP, Buti M, Gane E, et al. Hepatitis C virus infection. Nat Reviews Disease Primers. 2017;3:17006.

    PubMed 

    Google Scholar 

  • Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: from discovery to cure. Nat Reviews Gastroenterol Hepatol. 2022;19(8):533–50.

    Google Scholar 

  • Bukh J. The history of hepatitis C virus (HCV): basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol. 2016;65(1 Suppl):S2–21.

    PubMed 

    Google Scholar 

  • Adams RL, Pirakitikulr N, Pyle AM. Functional RNA structures throughout the hepatitis C virus genome. Curr Opin Virol. 2017;24:79–86.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Méndez-Sánchez N, Coronel-Castillo CE, Ramírez-Mejía MM. Chronic hepatitis C virus infection, extrahepatic disease and the impact of new Direct-Acting antivirals. Pathogens (Basel Switzerland) 2024;13(4).

  • Merz A, Long G, Hiet MS, et al. Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem. 2011;286(4):3018–32.

    PubMed 

    Google Scholar 

  • Lindenbach BD, Meuleman P, Ploss A, et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci USA. 2006;103(10):3805–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses 2019;11(1).

  • Pileri P, Uematsu Y, Campagnoli S, et al. Binding of hepatitis C virus to CD81. Sci (New York NY). 1998;282(5390):938–41.

    Google Scholar 

  • Scarselli E, Ansuini H, Cerino R, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002;21(19):5017–25.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans MJ, von Hahn T, Tscherne DM, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446(7137):801–5.

    PubMed 

    Google Scholar 

  • Ploss A, Evans MJ, Gaysinskaya VA, et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009;457(7231):882–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA. 1999;96(22):12766–71.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lupberger J, Zeisel MB, Xiao F, et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med. 2011;17(5):589–95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sainz B Jr., Barretto N, Martin DN, et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med. 2012;18(2):281–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma NR, Mateu G, Dreux M, Grakoui A, Cosset FL, Melikyan GB. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J Biol Chem. 2011;286(35):30361–76.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Sci (New York NY). 1989;244(4902):359–62.

    Google Scholar 

  • Niepmann M. Hepatitis C virus RNA translation. Curr Top Microbiol Immunol. 2013;369:143–66.

    PubMed 

    Google Scholar 

  • Honda M, Beard MR, Ping LH, Lemon SM. A phylogenetically conserved stem-loop structure at the 5’ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol. 1999;73(2):1165–74.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffman B, Liu Q. Hepatitis C viral protein translation: mechanisms and implications in developing antivirals. Liver International: Official J Int Association Study Liver. 2011;31(10):1449–67.

    Google Scholar 

  • Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med. 2013;19(7):837–49.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartenschlager R, Lohmann V, Wilkinson T, Koch JO. Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. J Virol. 1995;69(12):7519–28.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubuisson J, Cosset FL. Virology and cell biology of the hepatitis C virus life cycle: an update. J Hepatol. 2014;61(1 Suppl):S3–13.

    PubMed 

    Google Scholar 

  • Foster TL, Belyaeva T, Stonehouse NJ, Pearson AR, Harris M. All three domains of the hepatitis C virus nonstructural NS5A protein contribute to RNA binding. J Virol. 2010;84(18):9267–77.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Appel N, Zayas M, Miller S, et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 2008;4(3):e1000035.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tellinghuisen TL, Foss KL, Treadaway J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog. 2008;4(3):e1000032.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu M, Rice CM. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc Natl Acad Sci USA. 2010;107(2):521–8.

    PubMed 

    Google Scholar 

  • Gouttenoire J, Penin F, Moradpour D. Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol. 2010;20(2):117–29.

    PubMed 

    Google Scholar 

  • Wozniak AL, Griffin S, Rowlands D, et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog. 2010;6(9):e1001087.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Herker E, Harris C, Hernandez C, et al. Efficient hepatitis C virus particle formation requires Diacylglycerol acyltransferase-1. Nat Med. 2010;16(11):1295–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ariumi Y, Kuroki M, Maki M, et al. The ESCRT system is required for hepatitis C virus production. PLoS ONE. 2011;6(1):e14517.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barouch-Bentov R, Neveu G, Xiao F et al. Hepatitis C virus proteins interact with the endosomal sorting complex required for transport (ESCRT) machinery via ubiquitination to facilitate viral envelopment. mBio 2016;7(6).

  • Falcón V, Acosta-Rivero N, González S, et al. Ultrastructural and biochemical basis for hepatitis C virus morphogenesis. Virus Genes. 2017;53(2):151–64.

    PubMed 

    Google Scholar 

  • Mankouri J, Walter C, Stewart H, et al. Release of infectious hepatitis C virus from Huh7 cells occurs via a trans-Golgi Network-to-Endosome pathway independent of Very-Low-Density lipoprotein secretion. J Virol. 2016;90(16):7159–70.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baber AS, Suganthan B, Ramasamy RP. Current advances in hepatitis C diagnostics. J Biol Eng. 2024;18(1):48.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 2014;61(1 Suppl):S58–68.

    PubMed 

    Google Scholar 

  • Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature. 2005;436(7053):946–52.

    PubMed 

    Google Scholar 

  • Santantonio T, Wiegand J, Gerlach JT. Acute hepatitis C: current status and remaining challenges. J Hepatol. 2008;49(4):625–33.

    PubMed 

    Google Scholar 

  • Liu CH, Kao JH. Acute hepatitis C virus infection: clinical update and remaining challenges. Clin Mol Hepatol. 2023;29(3):623–42.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Takano S, Omata M, Ohto M, Satomura Y. Prospective assessment of incidence of fulminant hepatitis in post-transfusion hepatitis: a study of 504 cases. Dig Dis Sci. 1994;39(1):28–32.

    PubMed 

    Google Scholar 

  • Kaplan DE, Hepatitis C, Virus. Ann Intern Med. 2020;173(5):Itc33–48.

    PubMed 

    Google Scholar 

  • Negro F. Natural history of hepatic and extrahepatic hepatitis C virus diseases and impact of Interferon-Free HCV therapy. Cold Spring Harbor Perspect Med 2020;10(4).

  • Shen C, Jiang X, Li M, Luo Y. Hepatitis virus and hepatocellular carcinoma: recent advances. Cancers 2023;15(2).

  • Axley P, Ahmed Z, Ravi S, Singal AK, Hepatitis C. Virus and hepatocellular carcinoma: A narrative review. J Clin Translational Hepatol. 2018;6(1):79–84.

    Google Scholar 

  • Khullar V, Firpi RJ. Hepatitis C cirrhosis: new perspectives for diagnosis and treatment. World J Hepatol. 2015;7(14):1843–55.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maqsood Q, Sumrin A, Iqbal M, et al. Hepatitis C virus/hepatitis B virus coinfection: current prospectives. Antivir Ther. 2023;28(4):13596535231189643.

    PubMed 

    Google Scholar 

  • Wangensteen KJ, Chang KM. Multiple roles for hepatitis B and C viruses and the host in the development of hepatocellular carcinoma. Hepatology (Baltimore MD). 2021;73(1Suppl 1):27–37.

    PubMed 

    Google Scholar 

  • Péneau C, Imbeaud S, La Bella T, et al. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut. 2022;71(3):616–26.

    PubMed 

    Google Scholar 

  • Jia L, Gao Y, He Y, Hooper JD, Yang P. HBV induced hepatocellular carcinoma and related potential immunotherapy. Pharmacol Res. 2020;159:104992.

    PubMed 

    Google Scholar 

  • Yuan H, Xu R, Li S, et al. The malignant transformation of viral hepatitis to hepatocellular carcinoma: mechanisms and interventions. MedComm. 2025;6(3):e70121.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heredia-Torres TG, Rincón-Sánchez AR, Lozano-Sepúlveda SA et al. Unraveling the molecular mechanisms involved in HCV-Induced carcinogenesis. Viruses 2022;14(12).

  • Rizzetto M, Canese MG, Aricò S, et al. Immunofluorescence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut. 1977;18(12):997–1003.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh C, Heller T, Glenn JS. Pathogenesis of and new therapies for hepatitis D. Gastroenterology. 2019;156(2):461–e476461.

    PubMed 

    Google Scholar 

  • Farci P, Niro GA. Clinical features of hepatitis D. Semin Liver Dis. 2012;32(3):228–36.

    PubMed 

    Google Scholar 

  • Pearlman B. Hepatitis delta infection: A clinical review. Semin Liver Dis. 2023;43(3):293–304.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Negro F, Lok AS. Hepatitis D: A review. JAMA. 2023;330(24):2376–87.

    PubMed 

    Google Scholar 

  • Miao Z, Xie Z, Ren L, Pan Q. Hepatitis D: advances and challenges. Chin Med J (Engl). 2022;135(7):767–73.

    PubMed 

    Google Scholar 

  • Wranke A, Pinheiro Borzacov LM, Parana R, et al. Clinical and virological heterogeneity of hepatitis delta in different regions world-wide: the hepatitis delta international network (HDIN). Liver International: Official J Int Association Study Liver. 2018;38(5):842–50.

    Google Scholar 

  • Stockdale AJ, Kreuels B, Henrion MYR, et al. The global prevalence of hepatitis D virus infection: systematic review and meta-analysis. J Hepatol. 2020;73(3):523–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Asselah T, Loureiro D, Tout I, et al. Future treatments for hepatitis delta virus infection. Liver International: Official J Int Association Study Liver. 2020;40(Suppl 1):54–60.

    Google Scholar 

  • Niro GA, Ferro A, Cicerchia F, Brascugli I, Durazzo M. Hepatitis delta virus: from infection to new therapeutic strategies. World J Gastroenterol. 2021;27(24):3530–42.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Z, Urban S. New insights into HDV persistence: the role of interferon response and implications for upcoming novel therapies. J Hepatol. 2021;74(3):686–99.

    PubMed 

    Google Scholar 

  • Taylor JM. Infection by Hepatitis Delta Virus. Viruses. 2020;12(6).

  • Griffin BL, Chasovskikh S, Dritschilo A, Casey JL. Hepatitis delta antigen requires a flexible quasi-double-stranded RNA structure to bind and condense hepatitis delta virus RNA in a ribonucleoprotein complex. J Virol. 2014;88(13):7402–11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Defenbaugh DA, Johnson M, Chen R, Zheng YY, Casey JL. Hepatitis delta antigen requires a minimum length of the hepatitis delta virus unbranched rod RNA structure for binding. J Virol. 2009;83(9):4548–56.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: improving virological knowledge to develop new treatments. Antiviral Res. 2023;209:105461.

    PubMed 

    Google Scholar 

  • Caviglia GP, Ciancio A, Rizzetto M. A review of HDV infection. Viruses 2022;14(8).

  • Sureau C, Negro F. The hepatitis delta virus: replication and pathogenesis. J Hepatol. 2016;64(1 Suppl):S102–16.

    PubMed 

    Google Scholar 

  • Loureiro D, Castelnau C, Tout I, et al. New therapies for hepatitis delta virus infection. Liver International: Official J Int Association Study Liver. 2021;41(Suppl 1):30–7.

    Google Scholar 

  • Lamas Longarela O, Schmidt TT, Schöneweis K, et al. Proteoglycans act as cellular hepatitis delta virus attachment receptors. PLoS ONE. 2013;8(3):e58340.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni Y, Lempp FA, Mehrle S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146(4):1070–83.

    PubMed 

    Google Scholar 

  • Macnaughton TB, Shi ST, Modahl LE, Lai MM. Rolling circle replication of hepatitis delta virus RNA is carried out by two different cellular RNA polymerases. J Virol. 2002;76(8):3920–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Greco-Stewart VS, Schissel E, Pelchat M. The hepatitis delta virus RNA genome interacts with the human RNA polymerases I and III. Virology. 2009;386(1):12–5.

    PubMed 

    Google Scholar 

  • Hsieh SY, Chao M, Coates L, Taylor J. Hepatitis delta virus genome replication: a polyadenylated mRNA for delta antigen. J Virol. 1990;64(7):3192–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mentha N, Clément S, Negro F, Alfaiate D. A review on hepatitis D: from virology to new therapies. J Adv Res. 2019;17:3–15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Casey JL. Control of ADAR1 editing of hepatitis delta virus RNAs. Curr Top Microbiol Immunol. 2012;353:123–43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lempp FA, Ni Y, Urban S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Reviews Gastroenterol Hepatol. 2016;13(10):580–9.

    Google Scholar 

  • Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut. 2021;70(9):1782–94.

    PubMed 

    Google Scholar 

  • Modahl LE, Lai MM. The large delta antigen of hepatitis delta virus potently inhibits genomic but not antigenomic RNA synthesis: a mechanism enabling initiation of viral replication. J Virol. 2000;74(16):7375–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong SY, Chen PJ. Phosphorylation of Serine 177 of the small hepatitis delta antigen regulates viral antigenomic RNA replication by interacting with the processive RNA polymerase II. J Virol. 2010;84(3):1430–8.

    PubMed 

    Google Scholar 

  • Glenn JS, Watson JA, Havel CM, White JM. Identification of a prenylation site in delta virus large antigen. Sci (New York NY). 1992;256(5061):1331–3.

    Google Scholar 

  • Hwang SB, Lai MM. Isoprenylation mediates direct protein-protein interactions between hepatitis large delta antigen and hepatitis B virus surface antigen. J Virol. 1993;67(12):7659–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bordier BB, Marion PL, Ohashi K, et al. A prenylation inhibitor prevents production of infectious hepatitis delta virus particles. J Virol. 2002;76(20):10465–72.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bordier BB, Ohkanda J, Liu P, et al. In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus. J Clin Investig. 2003;112(3):407–14.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonino F, Heermann KH, Rizzetto M, Gerlich WH. Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus-derived envelope. J Virol. 1986;58(3):945–50.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiner AJ, Choo QL, Wang KS, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol. 1988;62(2):594–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci USA. 2007;104(24):10205–10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO, Hepatitis D. 2023; https://www.who.int/news-room/fact-sheets/detail/hepatitis-d

  • Yurdaydın C, Idilman R, Bozkaya H, Bozdayi AM. Natural history and treatment of chronic delta hepatitis. J Viral Hepatitis. 2010;17(11):749–56.

    Google Scholar 

  • Lombardo D, Franzè MS, Caminiti G, Pollicino T. Hepatitis delta virus and hepatocellular carcinoma. Pathogens (Basel Switzerland) 2024;13(5).

  • Smedile A, Farci P, Verme G, et al. Influence of delta infection on severity of hepatitis B. Lancet (London England). 1982;2(8305):945–7.

    PubMed 

    Google Scholar 

  • Asselah T, Rizzetto M. Hepatitis D virus infection. N Engl J Med. 2023;389(1):58–70.

    PubMed 

    Google Scholar 

  • Wu JC, Chen TZ, Huang YS, et al. Natural history of hepatitis D viral superinfection: significance of viremia detected by polymerase chain reaction. Gastroenterology. 1995;108(3):796–802.

    PubMed 

    Google Scholar 

  • Schaper M, Rodriguez-Frias F, Jardi R, et al. Quantitative longitudinal evaluations of hepatitis delta virus RNA and hepatitis B virus DNA shows a dynamic, complex replicative profile in chronic hepatitis B and D. J Hepatol. 2010;52(5):658–64.

    PubMed 

    Google Scholar 

  • Lucifora J, Alfaiate D, Pons C, et al. Hepatitis D virus interferes with hepatitis B virus RNA production via interferon-dependent and -independent mechanisms. J Hepatol. 2023;78(5):958–70.

    PubMed 

    Google Scholar 

  • EASL Clinical Practice. Guidelines on hepatitis delta virus. J Hepatol. 2023;79(2):433–60.

    Google Scholar 

  • Bai X, Chen L, Liu X et al. Adult hepatitis B virus vaccination coverage in China from 2011 to 2021: A systematic review. Vaccines 2022;10(6).

  • Pondé RAA, Amorim GSP. Elimination of the hepatitis B virus: A goal, a challenge. Med Res Rev 2024.

  • McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human hepatitis B vaccine from Recombinant yeast. Nature. 1984;307(5947):178–80.

    PubMed 

    Google Scholar 

  • Pattyn J, Hendrickx G, Vorsters A, Van Damme P, Hepatitis B, Vaccines. J Infect Dis. 2021;224(12 Suppl 2):S343–51.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pondé RAA. Expression and detection of anti-HBs antibodies after hepatitis B virus infection or vaccination in the context of protective immunity. Arch Virol. 2019;164(11):2645–58.

    PubMed 

    Google Scholar 

  • Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Clin Liver Disease. 2018;12(1):33–4.

    Google Scholar 

  • EASL. 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. Journal of hepatology. 2017;67(2):370–398.

  • Blaney H, Khalid M, Heller T, Koh C. Epidemiology, presentation, and therapeutic approaches for hepatitis D infections. Expert Rev Anti Infect Ther. 2023;21(2):127–42.

    PubMed 

    Google Scholar 

  • Elbahrawy A, Atalla H, Alboraie M et al. Recent advances in protective vaccines against hepatitis viruses: A narrative review. Viruses 2023;15(1).

  • Rizzetto M, Hamid S, Negro F. The changing context of hepatitis D. J Hepatol. 2021;74(5):1200–11.

    PubMed 

    Google Scholar 

  • Matthews PC, Ocama P, Wang S, et al. Enhancing interventions for prevention of mother-to-child- transmission of hepatitis B virus. JHEP Reports: Innov Hepatol. 2023;5(8):100777.

    Google Scholar 

  • Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology (Baltimore MD). 2018;67(4):1560–99.

    PubMed 

    Google Scholar 

  • WHO Guidelines Approved by the Guidelines Review Committee. In: Prevention of Mother-to-Child Transmission of Hepatitis B Virus: Guidelines on Antiviral Prophylaxis in Pregnancy. Geneva: World Health Organization © World Health Organization 2020.; 2020.

  • Kumar M, Abbas Z, Azami M, et al. Asian Pacific association for the study of liver (APASL) guidelines: hepatitis B virus in pregnancy. Hep Intl. 2022;16(2):211–53.

    Google Scholar 

  • Dionne-Odom J, Tita AT, Silverman NS, #38. Hepatitis B in pregnancy screening, treatment, and prevention of vertical transmission. Am J Obstet Gynecol. 2016;214(1):6–14.

  • Gupta I, Ratho RK. Immunogenicity and safety of two schedules of hepatitis B vaccination during pregnancy. J Obstet Gynaecol Res. 2003;29(2):84–6.

    PubMed 

    Google Scholar 

  • Xiao XM, Li AZ, Chen X, Zhu YK, Miao J. Prevention of vertical hepatitis B transmission by hepatitis B Immunoglobulin in the third trimester of pregnancy. Int J Gynaecol Obstet. 2007;96(3):167–70.

    PubMed 

    Google Scholar 

  • Xu Q, Xiao L, Lu XB, Zhang YX, Cai X. A randomized controlled clinical trial: interruption of intrauterine transmission of hepatitis B virus infection with HBIG. World J Gastroenterol. 2006;12(21):3434–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eke AC, Eleje GU, Eke UA, Xia Y, Liu J. Hepatitis B Immunoglobulin during pregnancy for prevention of mother-to-child transmission of hepatitis B virus. Cochrane Database Syst Rev. 2017;2(2):Cd008545.

    PubMed 

    Google Scholar 

  • Lee C, Gong Y, Brok J, Boxall EH, Gluud C. Effect of hepatitis B immunisation in newborn infants of mothers positive for hepatitis B surface antigen: systematic review and meta-analysis. BMJ (Clinical Res ed). 2006;332(7537):328–36.

    Google Scholar 

  • Wong VC, Ip HM, Reesink HW, et al. Prevention of the HBsAg carrier state in newborn infants of mothers who are chronic carriers of HBsAg and hbeag by administration of hepatitis-B vaccine and hepatitis-B immunoglobulin. Double-blind randomised placebo-controlled study. Lancet (London England). 1984;1(8383):921–6.

    PubMed 

    Google Scholar 

  • Pan CQ, Duan Z, Dai E, et al. Tenofovir to prevent hepatitis B transmission in mothers with high viral load. N Engl J Med. 2016;374(24):2324–34.

    PubMed 

    Google Scholar 

  • Jourdain G, Ngo-Giang-Huong N, Harrison L, et al. Tenofovir versus placebo to prevent perinatal transmission of hepatitis B. N Engl J Med. 2018;378(10):911–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Funk AL, Lu Y, Yoshida K, et al. Efficacy and safety of antiviral prophylaxis during pregnancy to prevent mother-to-child transmission of hepatitis B virus: a systematic review and meta-analysis. Lancet Infect Dis. 2021;21(1):70–84.

    PubMed 

    Google Scholar 

  • Wen WH, Chen HL, Shih TT, et al. Long-term growth and bone development in children of HBV-infected mothers with and without fetal exposure to Tenofovir disoproxil fumarate. J Hepatol. 2020;72(6):1082–7.

    PubMed 

    Google Scholar 

  • Zeng QL, Yu ZJ, Ji F, et al. Tenofovir Alafenamide to prevent perinatal hepatitis B transmission: A multicenter, prospective, observational study. Clin Infect Dis. 2021;73(9):e3324–32.

    PubMed 

    Google Scholar 

  • Ding Y, Cao L, Zhu L, et al. Efficacy and safety of Tenofovir Alafenamide fumarate for preventing mother-to-child transmission of hepatitis B virus: a National cohort study. Aliment Pharmacol Ther. 2020;52(8):1377–86.

    PubMed 

    Google Scholar 

  • Zeng QL, Zhang HX, Zhang JY, et al. Tenofovir Alafenamide for pregnant Chinese women with active chronic hepatitis B: A multicenter prospective study. Clin Gastroenterol Hepatol. 2022;20(12):2826–e28372829.

    PubMed 

    Google Scholar 

  • Pan CQ, Zhu L, Yu AS, Zhao Y, Zhu B, Dai E. Tenofovir Alafenamide versus Tenofovir disoproxil fumarate for preventing vertical transmission in chronic hepatitis B mothers: A systematic review and Meta-Analysis. Clin Infect Dis. 2024;79(4):953–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma K, Murthy MK. A review of historical landmarks and pioneering technologies for the diagnosis of hepatitis C virus (HCV). Eur J Clin Microbiol Infect Dis. 2025;44(6):1289–303.

    PubMed 

    Google Scholar 

  • Stevens A, Lafferty L, Treloar C, et al. Acceptability of hepatitis C testing using point-of-care testing and dried blood spot collection among people at risk of hepatitis C infection. Int J Drug Policy. 2025;137:104720.

    PubMed 

    Google Scholar 

  • Conway A, Marshall AD, Grebely J, Fontaine G, Treloar C. Professional identities and new technologies of hepatitis C point-of-care testing. Soc Sci Med. 2025;378:118140.

    PubMed 

    Google Scholar 

  • Debette-Gratien M, François S, Chevalier C, et al. Towards hepatitis C elimination in france: scanvir, an effective model to test and treat drug users on dedicated days. J Viral Hepat. 2023;30(4):355–61.

    PubMed 

    Google Scholar 

  • Haga Y, Coates S, Ray R. Hepatitis C virus chronicity and oncogenic potential: vaccine development progress. Mol Aspects Med. 2024;99:101305.

    PubMed 

    Google Scholar 

  • Liang TJ, Feld JJ, Cox AL, Rice CM. Controlled human infection Model – Fast track to HCV vaccine?? N Engl J Med. 2021;385(13):1235–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartenschlager R, Baumert TF, Bukh J, et al. Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: considerations for scientists and funding agencies. Virus Res. 2018;248:53–62.

    PubMed 

    Google Scholar 

  • Chappell CA, Scarsi KK, Kirby BJ, et al. Ledipasvir plus Sofosbuvir in pregnant women with hepatitis C virus infection: a phase 1 Pharmacokinetic study. Lancet Microbe. 2020;1(5):E200–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Sayed MH, Hassany M, Ebeid FSES, Zeidan A, Asem N. THU-136-Ledipasvir/sofosbuvir for 8 weeks cures genotype 4 chronic hepatitis C in non-cirrhotic children and adolescents. Journal of hepatology. 2019;70(1, Supplement):e221.

  • Kushner T, Terrault NA. Hepatitis C in pregnancy: A unique opportunity to improve the hepatitis C cascade of care. Hepatol Commun. 2019;3(1):20–8.

    PubMed 

    Google Scholar 

  • Kushner T, Cohen J, Tien PC, Terrault NA. Evaluating women’s preferences for hepatitis C treatment during pregnancy. Hepatol Commun. 2018;2(11):1306–10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • EASL Clinical Practice. Guidelines on the management of hepatitis B virus infection. J Hepatol 2025.

  • Lee HW, Lee JS, Ahn SH. Hepatitis B virus cure: targets and future therapies. Int J Mol Sci 2020;22(1).

  • Kim SK, Fujii T, Kim SR, et al. Hepatitis B virus treatment and hepatocellular carcinoma: controversies and approaches to consensus. Liver Cancer. 2022;11(6):497–510.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Papatheodoridis GV, Idilman R, Dalekos GN, et al. The risk of hepatocellular carcinoma decreases after the first 5 years of Entecavir or Tenofovir in Caucasians with chronic hepatitis B. Hepatology (Baltimore MD). 2017;66(5):1444–53.

    PubMed 

    Google Scholar 

  • Yuen MF, Chen DS, Dusheiko GM, et al. Hepatitis B virus infection. Nat Reviews Disease Primers. 2018;4:18035.

    PubMed 

    Google Scholar 

  • Lok AS, McMahon BJ, Brown RS Jr., et al. Antiviral therapy for chronic hepatitis B viral infection in adults: A systematic review and meta-analysis. Hepatology (Baltimore MD). 2016;63(1):284–306.

    PubMed 

    Google Scholar 

  • Petersen J, Thompson AJ, Levrero M. Aiming for cure in HBV and HDV infection. J Hepatol. 2016;65(4):835–48.

    PubMed 

    Google Scholar 

  • Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol. 2023;13:1128807.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buti M, Marcos-Fosch C, Esteban R. Nucleos(t)ide analogue therapy: the role of Tenofovir Alafenamide. Liver International: Official J Int Association Study Liver. 2021;41(Suppl 1):9–14.

    Google Scholar 

  • Menéndez-Arias L, Álvarez M, Pacheco B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Curr Opin Virol. 2014;8:1–9.

    PubMed 

    Google Scholar 

  • Levrero M, Subic M, Villeret F, Zoulim F. Perspectives and limitations for nucleo(t)side analogs in future HBV therapies. Curr Opin Virol. 2018;30:80–9.

    PubMed 

    Google Scholar 

  • Chang TT, Gish RG, de Man R, et al. A comparison of Entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med. 2006;354(10):1001–10.

    PubMed 

    Google Scholar 

  • Marcellin P, Heathcote EJ, Buti M, et al. Tenofovir disoproxil fumarate versus Adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2008;359(23):2442–55.

    PubMed 

    Google Scholar 

  • Chang TT, Lai CL, Kew Yoon S, et al. Entecavir treatment for up to 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. Hepatology (Baltimore MD). 2010;51(2):422–30.

    PubMed 

    Google Scholar 

  • Buti M, Tsai N, Petersen J, et al. Seven-year efficacy and safety of treatment with Tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig Dis Sci. 2015;60(5):1457–64.

    PubMed 

    Google Scholar 

  • Yardeni D, Chang KM, Ghany MG. Current best practice in hepatitis B management and Understanding Long-term prospects for cure. Gastroenterology. 2023;164(1):42–e6046.

    PubMed 

    Google Scholar 

  • World Health O. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. Geneva: World Health Organization; 2015.

    Google Scholar 

  • Wong GL, Tse YK, Wong VW, Yip TC, Tsoi KK, Chan HL. Long-term safety of oral nucleos(t)ide analogs for patients with chronic hepatitis B: A cohort study of 53,500 subjects. Hepatology (Baltimore MD). 2015;62(3):684–93.

    PubMed 

    Google Scholar 

  • Hsu YC, Wei MT, Nguyen MH. Tenofovir Alafenamide as compared to Tenofovir disoproxil fumarate in the management of chronic hepatitis B with recent trends in patient demographics. Expert Rev Gastroenterol Hepatol. 2017;11(11):999–1008.

    PubMed 

    Google Scholar 

  • Yuen MF, Lai CL. Treatment of chronic hepatitis B: evolution over two decades. J Gastroenterol Hepatol. 2011;26(Suppl 1):138–43.

    PubMed 

    Google Scholar 

  • Petersen J, Heyne R, Mauss S, et al. Effectiveness and safety of Tenofovir disoproxil fumarate in chronic hepatitis B: A 3-Year prospective field practice study in Germany. Dig Dis Sci. 2016;61(10):3061–71.

    PubMed 

    Google Scholar 

  • Nijampatnam B, Liotta DC. Recent advances in the development of HBV capsid assembly modulators. Curr Opin Chem Biol. 2019;50:73–9.

    PubMed 

    Google Scholar 

  • McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Global Health Med. 2023;5(4):199–207.

    Google Scholar 

  • Amblard F, Chen Z, Wiseman J, et al. Synthesis and evaluation of highly potent HBV capsid assembly modulators (CAMs). Bioorg Chem. 2023;141:106923.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang M, Gao Y, Kong F, et al. Efficacy and safety of GLS4 with Entecavir vs Entecavir alone in chronic hepatitis B patients: A multicenter clinical trial. J Infect. 2025;90(3):106446.

    PubMed 

    Google Scholar 

  • Jia H, Mai J, Wu M, et al. Safety, tolerability, pharmacokinetics, and antiviral activity of the novel core protein allosteric modulator ZM-H1505R (Canocapavir) in chronic hepatitis B patients: a randomized multiple-dose escalation trial. BMC Med. 2023;21(1):98.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng Y, Yang L, Yu L et al. Canocapavir is a novel capsid assembly modulator inducing a conformational change of the linker region of HBV core protein. Viruses 2023;15(5).

  • Vendeville S, Amblard F, Bassit L, et al. The discovery and preclinical profile of ALG-000184, a prodrug of the potent hepatitis B virus capsid assembly modulator ALG-001075. J Med Chem. 2024;67(23):21126–42.

    PubMed 

    Google Scholar 

  • Allweiss L, Volmari A, Suri V, et al. Blocking viral entry with bulevirtide reduces the number of HDV-infected hepatocytes in human liver biopsies. J Hepatol. 2024;80(6):882–91.

    PubMed 

    Google Scholar 

  • Liu H, Zakrzewicz D, Nosol K, et al. Structure of antiviral drug bulevirtide bound to hepatitis B and D virus receptor protein NTCP. Nat Commun. 2024;15(1):2476.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology. 2014;147(1):48–64.

    PubMed 

    Google Scholar 

  • Wedemeyer H, Bogomolov P, Blank A, et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of myrcludex B in combination with Tenofovir in patients with chronic HBV/HDV co-infection. J Hepatol. 2018;68:S3–3.

    Google Scholar 

  • Loglio A, Ferenci P, Uceda Renteria SC, et al. Excellent safety and effectiveness of high-dose myrcludex-B monotherapy administered for 48 weeks in HDV-related compensated cirrhosis: A case report of 3 patients. J Hepatol. 2019;71(4):834–9.

    PubMed 

    Google Scholar 

  • Kim SW, Yoon JS, Lee M, Cho Y. Toward a complete cure for chronic hepatitis B: novel therapeutic targets for hepatitis B virus. Clin Mol Hepatol. 2022;28(1):17–30.

    PubMed 

    Google Scholar 

  • Hosaka T, Suzuki F, Kobayashi M, et al. Long-term Entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology (Baltimore MD). 2013;58(1):98–107.

    PubMed 

    Google Scholar 

  • Coffin CS, Rezaeeaval M, Pang JX, et al. The incidence of hepatocellular carcinoma is reduced in patients with chronic hepatitis B on long-term nucleos(t)ide analogue therapy. Aliment Pharmacol Ther. 2014;40(11–12):1262–9.

    PubMed 

    Google Scholar 

  • Li H, Sheng C, Wang S, et al. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front Cell Infect Microbiol. 2017;7:91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kostyushev D, Kostyusheva A, Brezgin S, et al. Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV CccDNA cleaved by CRISPR/Cas9. Sci Rep. 2019;9(1):1847.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Therapy: J Am Soc Gene Therapy. 2013;21(10):1889–97.

    Google Scholar 

  • Chen J, Zhang W, Lin J, et al. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Therapy: J Am Soc Gene Therapy. 2014;22(2):303–11.

    Google Scholar 

  • Hong J, Rajwanshi VK. Antisense oligonucleotides as drugs with both direct and indirect antiviral actions. Antiviral Res. 2025;240:106219.

    PubMed 

    Google Scholar 

  • Yuen MF, Lim SG, Plesniak R, et al. Efficacy and safety of bepirovirsen in chronic hepatitis B infection. N Engl J Med. 2022;387(21):1957–68.

    PubMed 

    Google Scholar 

  • Gao YH, Liang XE, Tan YW et al. HBsAg loss and seroconversion after 16-week or 24-week AHB-137 treatment in HBeAg-negative chronic hepatitis B participants on NA therapy: results from an ongoing multicenter, randomized phase IIb study. J Hepatol 2025;82.

  • Grünweller A, Hartmann RK. RNA interference as a gene-specific approach for molecular medicine. Curr Med Chem. 2005;12(26):3143–61.

    PubMed 

    Google Scholar 

  • Ryther RC, Flynt AS, Phillips JA 3rd, Patton JG. SiRNA therapeutics: big potential from small RNAs. Gene Ther. 2005;12(1):5–11.

    PubMed 

    Google Scholar 

  • Hui RW, Mak LY, Seto WK, Yuen MF. RNA interference as a novel treatment strategy for chronic hepatitis B infection. Clin Mol Hepatol. 2022;28(3):408–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sneller L, Lin C, Price A, Kottilil S, Chua JV. RNA interference therapeutics for chronic hepatitis B: progress, challenges, and future prospects. Microorganisms 2024;12(3).

  • MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A. 2008;105(2):512–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Macrae IJ, Zhou K, Li F, et al. Structural basis for double-stranded RNA processing by Dicer. Science. 2006;311(5758):195–8.

    PubMed 

    Google Scholar 

  • Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming barriers for SiRNA therapeutics: from bench to bedside. Pharmaceuticals (Basel) 2020;13(10).

  • Qiu Y, Lam JK, Leung SW, Liang W. Delivery of RNAi therapeutics to the Airways-From bench to bedside. Molecules 2016;21(9).

  • Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59(2–3):75–86.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwakawa HO, Tomari Y. Life of RISC: formation, action, and degradation of RNA-induced Silencing complex. Mol Cell. 2022;82(1):30–43.

    PubMed 

    Google Scholar 

  • Thi EP, Dhillon AP, Ardzinski A, et al. ARB-1740, a RNA interference therapeutic for chronic hepatitis B infection. ACS Infect Dis. 2019;5(5):725–37.

    PubMed 

    Google Scholar 

  • Sajid MI, Moazzam M, Cho Y, et al. SiRNA therapeutics for the therapy of COVID-19 and other coronaviruses. Mol Pharm. 2021;18(6):2105–21.

    PubMed 

    Google Scholar 

  • Kang H, Ga YJ, Kim SH, et al. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30(1):88.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen L, Nguyen TT, Kim JY, Jeong JH. Advanced SiRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates. J Nanobiotechnol. 2024;22(1):745.

    Google Scholar 

  • Wooddell CI, Yuen MF, Chan HL et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci Transl Med 2017;9(409).

  • Lee ACH, Thi EP, Cuconati A, et al. Function and drug combination studies in cell culture models for AB-729, a subcutaneously administered SiRNA investigational agent for chronic hepatitis B infection. J Hepatol. 2019;70(1):E471–471.

    Google Scholar 

  • Streinu-Cercel A, Gane E, Cheng W, et al. SAT-155 – A phase 2a study evaluating the multi-dose activity of ARB-1467 in hbeag positive and negative virally suppressed subjects with hepatitis B. J Hepatol. 2017;66(1):S688–9.

    Google Scholar 

  • Hou J, Zhang W, Xie Q et al. Xalnesiran with or without an Immunomodulator in chronic hepatitis B. 2024;391(22):2098–109.

  • Yuen MF, Lim YS, Yoon KT, et al. VIR-2218 (elebsiran) plus pegylated interferon-alfa-2a in participants with chronic hepatitis B virus infection: a phase 2 study. Lancet Gastroenterol Hepatol. 2024;9(12):1121–32.

    PubMed 

    Google Scholar 

  • Agarwal K, Buti M, van Bömmel F, et al. JNJ-73763989 and Bersacapavir treatment in nucleos(t)ide analogue-suppressed patients with chronic hepatitis B: REEF-2. J Hepatol. 2024;81(3):404–14.

    PubMed 

    Google Scholar 

  • Gane EJ, Kim W, Lim TH, et al. First-in-human randomized study of RNAi therapeutic RG6346 for chronic hepatitis B virus infection. J Hepatol. 2023;79(5):1139–49.

    PubMed 

    Google Scholar 

  • Iannacone M, Beccaria CG, Allweiss L, et al. Targeting HBV with RNA interference: paths to cure. Sci Transl Med. 2025;17(805):eadv3678.

    PubMed 

    Google Scholar 

  • Vaillant A. REP 2139: antiviral mechanisms and applications in achieving functional control of HBV and HDV infection. ACS Infect Dis. 2019;5(5):675–87.

    PubMed 

    Google Scholar 

  • Blanchet M, Sinnathamby V, Vaillant A, Labonté P. Inhibition of HBsAg secretion by nucleic acid polymers in HepG2.2.15 cells. Antiviral Res. 2019;164:97–105.

    PubMed 

    Google Scholar 

  • Hershkovich L, Shekhtman L, Bazinet M et al. Rapid monophasic HBsAg decline during nucleic-acid polymer-based therapy predicts functional cure. Hepatol Commun 2023;7(8).

  • Boulon R, Blanchet M, Lemasson M, Vaillant A, Labonté P. Characterization of the antiviral effects of REP 2139 on the HBV lifecycle in vitro. Antiviral Res. 2020;183:104853.

    PubMed 

    Google Scholar 

  • Brillanti S. Management of delta hepatitis 45 years after the discovery of HDV. J Clin Med 2022;11(6).

  • Bazinet M, Pântea V, Cebotarescu V, et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): a non-randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2017;2(12):877–89.

    PubMed 

    Google Scholar 

  • Bazinet M, Pântea V, Placinta G, et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, Tenofovir disoproxil, and pegylated interferon Alfa-2a in patients with chronic HBV infection Naïve to Nucleos(t)ide therapy. Gastroenterology. 2020;158(8):2180–94.

    PubMed 

    Google Scholar 

  • Watanabe T, Hayashi S, Zhaoyu Y, et al. A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA. J Gastroenterol. 2024;59(4):315–28.

    PubMed 

    Google Scholar 

  • Lam AM, Dugyala RR, Sheraz M et al. Preclinical antiviral and safety profiling of the HBV RNA destabilizer AB-161. Viruses 2024;16(3).

  • Lucifora J, Xia Y, Reisinger F, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus CccDNA. Sci (New York NY). 2014;343(6176):1221–8.

    Google Scholar 

  • Li Q, Sun B, Zhuo Y, et al. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol. 2022;13:1034968.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li F, Qu L, Liu Y, et al. PegIFN alpha-2a reduces relapse in HBeAg-negative patients after nucleo(s)tide analogue cessation: A randomized-controlled trial. J Hepatol. 2025;82(2):211–21.

    PubMed 

    Google Scholar 

  • Lang T, Lo C, Skinner N, Locarnini S, Visvanathan K, Mansell A. The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway. J Hepatol. 2011;55(4):762–9.

    PubMed 

    Google Scholar 

  • Jo J, Tan AT, Ussher JE, et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 2014;10(6):e1004210.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexopoulou A, Vasilieva L, Karayiannis P. New approaches to the treatment of chronic hepatitis B. J Clin Med 2020;9(10).

  • Niu C, Li L, Daffis S, et al. Toll-like receptor 7 agonist GS-9620 induces prolonged Inhibition of HBV via a type I interferon-dependent mechanism. J Hepatol. 2018;68(5):922–31.

    PubMed 

    Google Scholar 

  • Menne S, Tumas DB, Liu KH, et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the woodchuck model of chronic hepatitis B. J Hepatol. 2015;62(6):1237–45.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanford RE, Guerra B, Chavez D, et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144(7):1508–17. 1517.e.

    PubMed 

    Google Scholar 

  • Daffis S, Balsitis S, Chamberlain J, et al. Toll-Like receptor 8 agonist GS-9688 induces sustained efficacy in the woodchuck model of chronic hepatitis B. Hepatology (Baltimore MD). 2021;73(1):53–67.

    PubMed 

    Google Scholar 

  • Dawood A, Abdul Basit S, Jayaraj M, Gish RG. Drugs in development for hepatitis B. Drugs. 2017;77(12):1263–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuen MF, Chen CY, Liu CJ, et al. A phase 2, open-label, randomized, multiple-dose study evaluating inarigivir in treatment-naïve patients with chronic hepatitis B. Liver International: Official J Int Association Study Liver. 2023;43(1):77–89.

    Google Scholar 

  • Yuen M-F, Chen C-Y, Liu C-J, et al. GS-12-Ascending dose cohort study of inarigivir – A novel RIG I agonist in chronic HBV patients: final results of the ACHIEVE trial. J Hepatol. 2019;70(1):e47–8.

    Google Scholar 

  • Agarwal K, Afdhal N, Coffin C, et al. Liver toxicity in the phase 2 catalyst 206 trial of inarigivir 400 mg daily added to a nucleoside in HBV EAg negative patients. J Hepatol. 2020;73:S125–125.

    Google Scholar 

  • Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol. 2008;45(4):963–70.

    PubMed 

    Google Scholar 

  • Kassel R, Cruise MW, Iezzoni JC, Taylor NA, Pruett TL, Hahn YS. Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology (Baltimore MD). 2009;50(5):1625–37.

    PubMed 

    Google Scholar 

  • Zhang WJ, Peng CH, Zheng SS. Programmed death 1 and programmed death ligand 1 expressions in patients with chronic hepatitis B. Hepatobiliary Pancreat Dis International: HBPD INT. 2013;12(4):394–9.

    Google Scholar 

  • Gane E, Verdon DJ, Brooks AE, et al. Anti-PD-1 Blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J Hepatol. 2019;71(5):900–7.

    PubMed 

    Google Scholar 

  • Lee YB, Lee JH, Kim YJ, Yoon JH, Lee HS. The effect of therapeutic vaccination for the treatment of chronic hepatitis B virus infection. J Med Virol. 2015;87(4):575–82.

    PubMed 

    Google Scholar 

  • Zoulim F, Fournier C, Habersetzer F, et al. Safety and immunogenicity of the therapeutic vaccine TG1050 in chronic hepatitis B patients: a phase 1b placebo-controlled trial. Hum Vaccines Immunotherapeutics. 2020;16(2):388–99.

    Google Scholar 

  • Lok AS, Pan CQ, Han SH, et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J Hepatol. 2016;65(3):509–16.

    PubMed 

    Google Scholar 

  • Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardi N, Krammer F. mRNA vaccines for infectious diseases – advances, challenges and opportunities. Nat Rev Drug Discovery. 2024;23(11):838–61.

    PubMed 

    Google Scholar 

  • Tseng HF, Ackerson BK, Sy LS, et al. mRNA-1273 bivalent (original and Omicron) COVID-19 vaccine effectiveness against COVID-19 outcomes in the united States. Nat Commun. 2023;14(1):5851.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Narayanan E, Falcone S, Elbashir SM et al. Rational design and in vivo characterization of mRNA-Encoded broadly neutralizing antibody combinations against HIV-1. Antibodies (Basel Switzerland) 2022;11(4).

  • Lee IT, Nachbagauer R, Ensz D, et al. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nat Commun. 2023;14(1):3631.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao H, Shao X, Yu Y, et al. A therapeutic hepatitis B mRNA vaccine with strong immunogenicity and persistent virological suppression. NPJ Vaccines. 2024;9(1):22.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoofnagle JH, Mullen KD, Jones DB, et al. Treatment of chronic non-A,non-B hepatitis with Recombinant human alpha interferon. A preliminary report. N Engl J Med. 1986;315(25):1575–8.

    PubMed 

    Google Scholar 

  • Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002;347(13):975–82.

    PubMed 

    Google Scholar 

  • Di Marco L, Cannova S, Ferrigno E et al. A comprehensive review of antiviral therapy for hepatitis C: the long journey from interferon to Pan-Genotypic Direct-Acting antivirals (DAAs). Viruses 2025;17(2).

  • Taha G, Ezra L, Abu-Freha N, Hepatitis C. Elimination: opportunities and challenges in 2023. Viruses 2023;15(7).

  • Tani J, Masaki T, Oura K, Tadokoro T, Morishita A, Kobara H. Extrahepatic cancer risk in patients with hepatitis C virus infection treated with Direct-Acting antivirals. Microorganisms 2024;12(9).

  • Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on hepatitis C vaccine: results and challenges. Viruses 2024;16(8).

  • Zhou J, Wang FD, Li LQ, Chen EQ. Management of in- and out-of-hospital screening for hepatitis C. Front Public Health. 2022;10:984810.

    PubMed 

    Google Scholar 

  • Götte M, Feld JJ. Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights. Nat Reviews Gastroenterol Hepatol. 2016;13(6):338–51.

    Google Scholar 

  • Lamarre D, Anderson PC, Bailey M, et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. 2003;426(6963):186–9.

    PubMed 

    Google Scholar 

  • Hinrichsen H, Benhamou Y, Wedemeyer H, et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus Serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology. 2004;127(5):1347–55.

    PubMed 

    Google Scholar 

  • Vanwolleghem T, Meuleman P, Libbrecht L, Roskams T, De Vos R, Leroux-Roels G. Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology. 2007;133(4):1144–55.

    PubMed 

    Google Scholar 

  • Poordad F, McCone J Jr., Bacon BR, et al. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med. 2011;364(13):1195–206.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobson IM, McHutchison JG, Dusheiko G, et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med. 2011;364(25):2405–16.

    PubMed 

    Google Scholar 

  • Romano KP, Ali A, Royer WE, Schiffer CA. Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci USA. 2010;107(49):20986–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawitz E, Jacobson IM, Nelson DR, et al. Development of Sofosbuvir for the treatment of hepatitis C virus infection. Ann N Y Acad Sci. 2015;1358:56–67.

    PubMed 

    Google Scholar 

  • Abraham GM, Spooner LM. Sofosbuvir in the treatment of chronic hepatitis C: new dog, new tricks. Clin Infect Diseases: Official Publication Infect Dis Soc Am. 2014;59(3):411–5.

    Google Scholar 

  • Sofosbuvir/Velpatasvir. (Epclusa) for hepatitis C. JAMA. 2017;317(6):639–40.

    Google Scholar 

  • Younossi ZM, Stepanova M, Sulkowski M, Wyles D, Kottilil S, Hunt S. Patient-reported outcomes in patients co-infected with hepatitis C virus and human immunodeficiency virus treated with Sofosbuvir and velpatasvir: the ASTRAL-5 study. Liver International: Official J Int Association Study Liver. 2017;37(12):1796–804.

    Google Scholar 

  • EASL Recommendations on Treatment of Hepatitis C. 2018. Journal of hepatology. 2018;69(2):461–511.

  • Hepatitis CG. 2018 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Clin Infect Dis. 2018;67(10):1477–1492.

  • Bourlière M, Gordon SC, Flamm SL, et al. Sofosbuvir, velpatasvir, and voxilaprevir for previously treated HCV infection. N Engl J Med. 2017;376(22):2134–46.

    PubMed 

    Google Scholar 

  • Degasperi E, Spinetti A, Lombardi A, et al. Real-life effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in hepatitis C patients with previous DAA failure. J Hepatol. 2019;71(6):1106–15.

    PubMed 

    Google Scholar 

  • Llaneras J, Riveiro-Barciela M, Lens S, et al. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAAs. J Hepatol. 2019;71(4):666–72.

    PubMed 

    Google Scholar 

  • Graf C, D’Ambrosio R, Degasperi E, et al. Real-world effectiveness of voxilaprevir/velpatasvir/sofosbuvir in patients following DAA failure. JHEP Reports: Innov Hepatol. 2024;6(3):100994.

    Google Scholar 

  • Lampertico P, Carrión JA, Curry M, et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir for the treatment of patients with chronic HCV infection: A meta-analysis. J Hepatol. 2020;72(6):1112–21.

    PubMed 

    Google Scholar 

  • Lamb YN. Glecaprevir/Pibrentasvir: first global approval. Drugs. 2017;77(16):1797–804.

    PubMed 

    Google Scholar 

  • Wedemeyer H, Erren P, Naumann U, et al. Glecaprevir/pibrentasvir is safe and effective in hepatitis C patients with cirrhosis: Real-world data from the German hepatitis C-Registry. Liver International: Official J Int Association Study Liver. 2021;41(5):949–55.

    Google Scholar 

  • Lu M, Rupp LB, Melkonian C, et al. Real-World safety and effectiveness of an 8-Week regimen of glecaprevir/pibrentasvir in patients with hepatitis C and cirrhosis. Adv Therapy. 2024;41(2):744–58.

    Google Scholar 

  • Pol S, Thompson AJ, Collins M et al. Effectiveness and safety of glecaprevir/pibrentasvir for 8 weeks in the treatment of patients with acute hepatitis C: A single-arm retrospective study. Hepatology (Baltimore MD). 2024.

  • Brown RS Jr., Buti M, Rodrigues L, et al. Glecaprevir/pibrentasvir for 8 weeks in treatment-naïve patients with chronic HCV genotypes 1–6 and compensated cirrhosis: the EXPEDITION-8 trial. J Hepatol. 2020;72(3):441–9.

    PubMed 

    Google Scholar 

  • Wei L, Wang G, Alami NN, et al. Glecaprevir-pibrentasvir to treat chronic hepatitis C virus infection in asia: two multicentre, phase 3 studies- a randomised, double-blind study (VOYAGE-1) and an open-label, single-arm study (VOYAGE-2). Lancet Gastroenterol Hepatol. 2020;5(9):839–49.

    PubMed 

    Google Scholar 

  • Zhou XJ, Good SS, Pietropaolo K, et al. Bemnifosbuvir (BEM, AT-527), a novel nucleotide analogue inhibitor of the hepatitis C virus NS5B polymerase. Expert Opin Investig Drugs. 2024;33(1):9–17.

    PubMed 

    Google Scholar 

  • Good SS, Moussa A, Zhou XJ, Pietropaolo K, Sommadossi JP. Preclinical evaluation of AT-527, a novel Guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS ONE. 2020;15(1):e0227104.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jucov A, Conway B, Iliescu L, et al. THU-382 Lead-in cohort results from a phase 2 study of a novel 8-week combination regimen of bemnifosbuvir and Ruzasvir in patients with chronic hepatitis C virus infection. J Hepatol. 2024;80:S819.

    Google Scholar 

  • Castelnau C, Le Gal F, Ripault MP, et al. Efficacy of peginterferon alpha-2b in chronic hepatitis delta: relevance of quantitative RT-PCR for follow-up. Hepatology (Baltimore MD). 2006;44(3):728–35.

    PubMed 

    Google Scholar 

  • Heidrich B, Yurdaydın C, Kabaçam G, et al. Late HDV RNA relapse after peginterferon alpha-based therapy of chronic hepatitis delta. Hepatology (Baltimore MD). 2014;60(1):87–97.

    PubMed 

    Google Scholar 

  • Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4(1):69–77.

    PubMed 

    Google Scholar 

  • Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4(1):63–8.

    PubMed 

    Google Scholar 

  • Giersch K, Homs M, Volz T, et al. Both interferon alpha and lambda can reduce all intrahepatic HDV infection markers in HBV/HDV infected humanized mice. Sci Rep. 2017;7(1):3757.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang C, Syed YY. Bulevirtide: first approval. Drugs. 2020;80(15):1601–5.

    PubMed 

    Google Scholar 

  • Wedemeyer H, Schöneweis K, Bogomolov P, et al. Safety and efficacy of bulevirtide in combination with Tenofovir disoproxil fumarate in patients with hepatitis B virus and hepatitis D virus coinfection (MYR202): a multicentre, randomised, parallel-group, open-label, phase 2 trial. Lancet Infect Dis. 2023;23(1):117–29.

    PubMed 

    Google Scholar 

  • Wedemeyer H, Aleman S, Brunetto MR, et al. A phase 3, randomized trial of bulevirtide in chronic hepatitis D. N Engl J Med. 2023;389(1):22–32.

    PubMed 

    Google Scholar 

  • Dhillon S. Lonafarnib: first approval. Drugs. 2021;81(2):283–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lange F, Garn J, Anagho HA, et al. Hepatitis D virus infection, innate immune response and antiviral treatments in stem cell-derived hepatocytes. Liver International: Official J Int Association Study Liver. 2023;43(10):2116–29.

    Google Scholar 

  • Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of Farnesyl protein transferase, in human tumor xenograft models and wap-ras Transgenic mice. Cancer Res. 1998;58(21):4947–56.

    PubMed 

    Google Scholar 

  • Roca Suarez AA, Batbold E, Bartosch B, Dashdorj N, Testoni B, Zoulim F. Emerging anti-HDV drugs and HBV cure strategies with anti-HDV activity. Liver International: Official J Int Association Study Liver. 2023;43(Suppl 1):87–95.

    Google Scholar 

  • Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol. 2024;979:176727.

    PubMed 

    Google Scholar 

  • Einav S, Glenn JS. Prenylation inhibitors: a novel class of antiviral agents. J Antimicrob Chemother. 2003;52(6):883–6.

    PubMed 

    Google Scholar 

  • Yurdaydin C, Keskin O, Kalkan Ç, et al. Optimizing Lonafarnib treatment for the management of chronic delta hepatitis: the LOWR HDV-1 study. Hepatology (Baltimore MD). 2018;67(4):1224–36.

    PubMed 

    Google Scholar 

  • Yurdaydin C, Idilman R, Keskin O, et al. A phase 2 dose-optimization study of Lonafarnib with Ritonavir for the treatment of chronic delta hepatitis-end of treatment results from the LOWR HDV-2 study. J Hepatol. 2017;66(1):S33–4.

    Google Scholar 

  • Koh C, Surana P, Han T, et al. A phase 2 study exploring once daily dosing of Ritonavir boosted Lonafarnib for the treatment of chronic delta hepatitis – end of study results from the LOWR HDV-3 study. J Hepatol. 2017;66(1):S101–2.

    Google Scholar 

  • Wedemeyer H, Port K, Deterding K, et al. A phase 2 dose-escalation study of Lonafarnib plus Ritonavir in patients with chronic hepatitis D: final results from the Lonafarnib with Ritonavir in HDV-4 (LOWR HDV-4) study. J Hepatol. 2017;66(1):S24–24.

    Google Scholar 

  • Continue Reading