McArdle JJ, Ferrer-Caja E, Hamagami F, Woodcock RW. Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Dev Psychol. 2002;38(1):115–42.
Google Scholar
Hakala JO, Pahkala K, Juonala M, Salo P, Kahonen M, Hutri-Kahonen N, Lehtimaki T, Laitinen TP, Jokinen E, Taittonen L, et al. Cardiovascular risk factor trajectories since childhood and cognitive performance in midlife: the cardiovascular risk in young Finns study. Circulation. 2021;143(20):1949–61.
Google Scholar
Stoney CM, Kaufmann PG, Czajkowski SM. Cardiovascular disease: psychological, social, and behavioral influences: introduction to the special issue. Am Psychol. 2018;73(8):949–54.
Google Scholar
Dove A, Wang J, Huang H, Dunk MM, Sakakibara S, Guitart-Masip M, Papenberg G, Xu W. Diabetes, prediabetes, and brain aging: the role of healthy lifestyle. Diabetes Care. 2024;47(10):1794–802.
Google Scholar
Ippoliti F, Canitano N, Businaro R. Stress and obesity as risk factors in cardiovascular diseases: a neuroimmune perspective. J Neuroimmune Pharmacol. 2013;8(1):212–26.
Google Scholar
Cuperlovic-Culf M, Badhwar A. Recent advances from metabolomics and lipidomics application in alzheimer’s disease inspiring drug discovery. Expert Opin Drug Discov. 2020;15(3):319–31.
Google Scholar
Wouters EJ, van Leeuwen N, Bossema ER, Kruize AA, Bootsma H, Bijlsma JW, Geenen R. Physical activity and physical activity cognitions are potential factors maintaining fatigue in patients with primary sjogren’s syndrome. Ann Rheum Dis. 2012;71(5):668–73.
Google Scholar
Arntzen KA, Schirmer H, Wilsgaard T, Mathiesen EB. Impact of cardiovascular risk factors on cognitive function: the Tromso study. Eur J Neurol. 2011;18(5):737–43.
Google Scholar
Katzmarzyk PT, Ross R, Blair SN, Despres JP. Should we target increased physical activity or less sedentary behavior in the battle against cardiovascular disease risk development? Atherosclerosis. 2020;311:107–15.
Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, Li Y, Li Y, Zhu M, Jiao H, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in china: a cross-sectional study. Lancet Public Health. 2020;5(12):e661–71.
Google Scholar
Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, et al. Practice guideline update summary: mild cognitive impairment [RETIRED]: report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology. 2018;90(3):126–35.
Google Scholar
Yuan L, Zhang X, Guo N, Li Z, Lv D, Wang H, Jin J, Wen X, Zhao S, Xu T, et al. Prevalence of cognitive impairment in Chinese older inpatients and its relationship with 1-year adverse health outcomes: a multi-center cohort study. BMC Geriatr. 2021;21(1):595.
Google Scholar
Naya DE, Naya H, White CR. On the interplay among ambient temperature, basal metabolic rate, and body mass. Am Nat. 2018;192(4):518–24.
Google Scholar
Meng T, Liu C, Wang B, Li C, Liu J, Chen J, Ma Y, Qie R. The protective role of basal metabolic rate in cognitive decline: evidence from epidemiological and genetic studies. Postgrad Med J. 2025;101(1195):417–26.
Google Scholar
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: key drivers in neurodegenerative disorders. Ageing Res Rev. 2025;104:102667.
Google Scholar
Elzinga SE, Guo K, Turfah A, Henn RE, Webber-Davis IF, Hayes JM, Pacut CM, Teener SJ, Carter AD, Rigan DM, et al. Metabolic stress and age drive inflammation and cognitive decline in mice and humans. Alzheimers Dement. 2025;21(3):e70060.
Google Scholar
Cruz-Jentoft AJ, Sayer AA. Sarcopenia Lancet. 2019;393(10191):2636–46.
Google Scholar
Soysal P, Ates Bulut E, Yavuz I, Isik AT. Decreased basal metabolic rate can be an objective marker for sarcopenia and frailty in older males. J Am Med Dir Assoc. 2019;20(1):58–63.
Google Scholar
Zhang H, Lin S, Gao T, Zhong F, Cai J, Sun Y, Ma A. Association between Sarcopenia and Metabolic Syndrome in Middle-Aged and Older Non-Obese Adults: A Systematic Review and Meta-Analysis. Nutrients 2018, 10(3).
Cho YJ, Lim YH, Yun JM, Yoon HJ, Park M. Sex- and age-specific effects of energy intake and physical activity on sarcopenia. Sci Rep. 2020;10(1):9822.
Google Scholar
Du H, Yu M, Xue H, Lu X, Chang Y, Li Z. Association between sarcopenia and cognitive function in older Chinese adults: evidence from the China health and retirement longitudinal study. Front Public Health. 2022;10:1078304.
Google Scholar
Beeri MS, Leugrans SE, Delbono O, Bennett DA, Buchman AS. Sarcopenia is associated with incident alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J Am Geriatr Soc. 2021;69(7):1826–35.
Google Scholar
Hu Y, Peng W, Ren R, Wang Y, Wang G. Sarcopenia and mild cognitive impairment among elderly adults: the first longitudinal evidence from CHARLS. J Cachexia Sarcopenia Muscle. 2022;13(6):2944–52.
Google Scholar
Jacob L, Kostev K, Smith L, Oh H, Lopez-Sanchez GF, Shin JI, Abduljabbar AS, Haro JM, Koyanagi A. Sarcopenia and mild cognitive impairment in older adults from six Low- and Middle-Income countries. J Alzheimers Dis. 2021;82(4):1745–54.
Google Scholar
Chen X, Han P, Yu X, Zhang Y, Song P, Liu Y, Jiang Z, Tao Z, Shen S, Wu Y, et al. Relationships between sarcopenia, depressive symptoms, and mild cognitive impairment in Chinese community-dwelling older adults. J Affect Disord. 2021;286:71–7.
Google Scholar
Wu B, Lyu YB, Cao ZJ, Wei Y, Shi WY, Gao X, Zhou JH, Kraus VB, Zhao F, Chen X, et al. Associations of sarcopenia, handgrip strength and calf circumference with cognitive impairment among Chinese older adults. Biomed Environ Sci. 2021;34(11):859–70.
Google Scholar
Bai A, Xu W, Sun J, Liu J, Deng X, Wu L, Zou X, Zuo J, Zou L, Liu Y, et al. Associations of sarcopenia and its defining components with cognitive function in community-dwelling oldest old. BMC Geriatr. 2021;21(1):292.
Google Scholar
Vints WAJ, Kusleikiene S, Sheoran S, Valatkeviciene K, Gleizniene R, Himmelreich U, Paasuke M, Cesnaitiene VJ, Levin O, Verbunt J, et al. Body fat and components of sarcopenia relate to inflammation, brain volume, and neurometabolism in older adults. Neurobiol Aging. 2023;127:1–11.
Google Scholar
Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the China health and retirement longitudinal study (CHARLS). Int J Epidemiol. 2014;43(1):61–8.
Google Scholar
Ding R, He P. Associations between childhood adversities and late-life cognitive function: potential mechanisms. Soc Sci Med. 2021;291:114478.
Google Scholar
Lu N, Wu B, Pei Y. Exploring the reciprocal relationship between cognitive function and edentulism among middle-aged and older adults in China. Age Ageing. 2021;50(3):809–14.
Google Scholar
Bai A, Shi H, Huang X, Xu W, Deng Y. Association of C-Reactive protein and motoric cognitive risk syndrome in Community-Dwelling older adults: the China health and retirement longitudinal study. J Nutr Health Aging. 2021;25(9):1090–5.
Google Scholar
Jak AJ, Bondi MW, Delano-Wood L, Wierenga C, Corey-Bloom J, Salmon DP, Delis DC. Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am J Geriatr Psychiatry. 2009;17(5):368–75.
Google Scholar
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–7.
Google Scholar
Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–7. e302.
Google Scholar
Gao K, Cao LF, Ma WZ, Gao YJ, Luo MS, Zhu J, Li T, Zhou D. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: findings from the China health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264.
Google Scholar
Wen X, Wang M, Jiang CM, Zhang YM. Anthropometric equation for Estimation of appendicular skeletal muscle mass in Chinese adults. Asia Pac J Clin Nutr. 2011;20(4):551–6.
Google Scholar
Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173–82.
Google Scholar
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front Physiol. 2021;12:825816.
Google Scholar
Ryu WI, Bormann MK, Shen M, Kim D, Forester B, Park Y, So J, Seo H, Sonntag KC, Cohen BM. Brain cells derived from alzheimer’s disease patients have multiple specific innate abnormalities in energy metabolism. Mol Psychiatry. 2021;26(10):5702–14.
Google Scholar
Nelson ME, Veal BM, Andel R, Martinkova J, Veverova K, Horakova H, Nedelska Z, Laczo J, Vyhnalek M, Hort J. Moderating effect of cognitive reserve on brain integrity and cognitive performance. Front Aging Neurosci. 2022;14:1018071.
Google Scholar
Ito H, Kubo H, Takahashi K, Nishijima KI, Ukon N, Nemoto A, Sugawara S, Yamakuni R, Ibaraki M, Ishii S. Integrated PET/MRI scanner with oxygen-15 labeled gases for quantification of cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen. Ann Nucl Med. 2021;35(4):421–8.
Google Scholar
Fleming V, Piro-Gambetti B, Patrick A, Zammit M, Alexander A, Christian BT, Handen B, Cohen A, Klunk W, Laymon C, et al. Physical activity and cognitive and imaging biomarkers of alzheimer’s disease in down syndrome. Neurobiol Aging. 2021;107:118–27.
Google Scholar
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic dysregulation contributes to the progression of alzheimer’s disease. Front Neurosci. 2020;14:530219.
Google Scholar
Yin J, Reiman EM, Beach TG, Serrano GE, Sabbagh MN, Nielsen M, Caselli RJ, Shi J. Effect of ApoE isoforms on mitochondria in alzheimer disease. Neurology. 2020;94(23):e2404–11.
Google Scholar
Guzzardi MA, Iozzo P. Brain functional imaging in obese and diabetic patients. Acta Diabetol. 2019;56(2):135–44.
Google Scholar
Molloy JW, Barry D. The interplay between glucose and ketone bodies in neural stem cell metabolism. J Neurosci Res. 2024;102(5):e25342.
Google Scholar
Guan L, Li T, Wang X, Yu K, Xiao R, Xi Y. Predictive Roles of Basal Metabolic Rate and Body Water Distribution in Sarcopenia and Sarcopenic Obesity: The link to Carbohydrates. Nutrients 2022, 14(19).
Cho YJ, Cho MH, Han B, Park M, Bak S, Park M. The association between the ratio of energy intake to basal metabolic rate and physical activity to sarcopenia: using the Korea National health and nutrition examination surveys (2008–2011). Korean J Fam Med. 2020;41(3):167–74.
Google Scholar
Alfaro-Acha A, Al Snih S, Raji MA, Kuo YF, Markides KS, Ottenbacher KJ. Handgrip strength and cognitive decline in older Mexican Americans. J Gerontol Biol Sci Med Sci. 2006;61(8):859–65.
Kim GR, Sun J, Han M, Nam CM, Park S. Evaluation of the directional relationship between handgrip strength and cognitive function: the Korean longitudinal study of ageing. Age Ageing. 2019;48(3):426–32.
Google Scholar
Buchman AS, Bennett DA. Loss of motor function in preclinical alzheimer’s disease. Expert Rev Neurother. 2011;11(5):665–76.
Google Scholar
Yang J, Deng Y, Yan H, Li B, Wang Z, Liao J, Cai X, Zhou L, Tan W, Rong S. Association between grip strength and cognitive function in US older adults of NHANES 2011–2014. J Alzheimers Dis. 2022;89(2):427–36.
Google Scholar
Aoi W, Sakuma K. Oxidative stress and skeletal muscle dysfunction with aging. Curr Aging Sci. 2011;4(2):101–9.
Google Scholar
Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P. Biomarkers of oxidative and nitrosative damage in alzheimer’s disease and mild cognitive impairment. Ageing Res Rev. 2009;8(4):285–305.
Google Scholar
Cesari M, Penninx BW, Pahor M, Lauretani F, Corsi AM, Rhys Williams G, Guralnik JM, Ferrucci L. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol Biol Sci Med Sci. 2004;59(3):242–8.
Lejri I, Agapouda A, Grimm A, Eckert A. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence. Oxid Med Cell Longev 2019, 2019:9695412.
Cheng Y, Lin S, Cao Z, Yu R, Fan Y, Chen J. The role of chronic low-grade inflammation in the development of sarcopenia: advances in molecular mechanisms. Int Immunopharmacol. 2025;147:114056.
Google Scholar
Cunningham C, Hennessy E. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimers Res Ther. 2015;7(1):33.
Google Scholar
Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD, Lo I, Minami S, et al. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta. J Neurosci. 2015;35(2):807–18.
Google Scholar
Shigehara K, Kato Y, Izumi K, Mizokami A. Relationship between testosterone and sarcopenia in Older-Adult men: A narrative review. J Clin Med. 2022;11(20).
Bahat G, Ozkok S, Petrovic M. Management of type 2 diabetes in frail older adults. Drugs Aging. 2023;40(9):751–61.
Google Scholar