Roles of inflammatory cytokines in the pathogenesis of hepatitis B virus-related acute-on-chronic liver failure and CAR-T therapy | Virology Journal

  • Lee DW, Barrett DM, Mackall C, Orentas R, Grupp SA. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res. 2012;18(10):2780–90.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017;27(1):38–58.

    PubMed 

    Google Scholar 

  • Rouce RH, Sharma S, Huynh M, Heslop HE. Recent advances in T-cell immunotherapy for haematological malignancies. Br J Haematol. 2017;176(5):688–704.

    PubMed 

    Google Scholar 

  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an Anti-B-Cell maturation antigen chimeric antigen receptor cause remissions of Poor-Prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–31.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Trepo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384(9959):2053–63.

    PubMed 

    Google Scholar 

  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–128.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi Y, Yang Y, Hu YT, et al. Acute-on-chronic liver failure precipitated by hepatic injury is distinct from that precipitated by extrahepatic insults. Hepatology. 2015;62(1):232–42.

    PubMed 

    Google Scholar 

  • Li H, Chen LY, Zhang NN, et al. Characteristics, diagnosis and prognosis of Acute-on-Chronic liver failure in cirrhosis associated to hepatitis B. Sci Rep. 2016;6:25487.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang YY, Meng ZJ. Definition and classification of acute-on-chronic liver diseases. World J Clin Cases. 2022;10(15):4717–25.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Seto WK, Lai CL, Yuen MF. Acute-on-chronic liver failure in chronic hepatitis B. J Gastroenterol Hepatol. 2012;27(4):662–9.

    PubMed 

    Google Scholar 

  • Zhao RH, Shi Y, Zhao H, Wu W, Sheng JF. Acute-on-chronic liver failure in chronic hepatitis B: an update. Expert Rev Gastroenterol Hepatol. 2018;12(4):341–50.

    PubMed 

    Google Scholar 

  • Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of liver disease: the major impact of China. Hepatology. 2014;60(6):2099–108.

    PubMed 

    Google Scholar 

  • Wu W, Yan H, Zhao H, et al. Characteristics of systemic inflammation in hepatitis B-precipitated ACLF: differentiate it from No-ACLF. Liver Int. 2018;38(2):248–57.

    PubMed 

    Google Scholar 

  • Sarin SK, Choudhury A, Sharma MK, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update. Hepatol Int. 2019;13(4):353–90.

    PubMed 

    Google Scholar 

  • EASL Clinical Practice. Guidelines on acute-on-chronic liver failure. J Hepatol. 2023;79(2):461–91.

    Google Scholar 

  • Liver F, Artificial Liver Group CS, o. I. D. CMA, Severe Liver D, Artificial Liver Group CS. o. H. C. M. A. Guideline for diagnosis and treatment of liver failure. Zhonghua Gan Zang Bing Za Zhi. 2019;27(1):18–26.

    Google Scholar 

  • Wu TZ, Li J, Shao L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus -related acute -on – chronic liver failure. Gut. 2018;67(12):2181–91.

    PubMed 

    Google Scholar 

  • Li J, Liang X, Jiang J. PBMC transcriptomics identifies immune-metabolism disorder during the development of. HBV-ACLF Gut. 2022;71(1):163–75.

    PubMed 

    Google Scholar 

  • Fabri A, Kandara K, Coudereau R, et al. Characterization of Circulating IL-10-Producing cells in septic shock patients: A proof of concept study. Front Immunol. 2020;11:615009.

    PubMed 

    Google Scholar 

  • Hyodo N, Nakamura I, Imawari M. Hepatitis B core antigen stimulates interleukin-10 secretion by both T cells and monocytes from peripheral blood of patients with chronic hepatitis B virus infection. Clin Exp Immunol. 2004;135(3):462–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lan T, Chang L, Wu L, Yuan YF. IL-6 plays a crucial role in HBV infection. J Clin Transl Hepatol. 2015;3(4):271–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • ZHANG ZHOUC, HE T T N, et al. High levels of serum interleukin-6 increase mortality of hepatitis B virus-associated acute-on-chronic liver failure[J]. World J Gastroenterol. 2020;26(30):4479–88.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu Z-B, Zheng Y-B, Gao Z-L et al. Plasma Interleukin-6 level: A potential prognostic Indicator of emergent HBV-Associated ACLF. Can J Gastroenterol Hepatol 2021;11:20215545181.

  • Wu ZB, Zheng YB, Wang K, et al. Plasma Interleukin-6 level: A potential prognostic Indicator of emergent HBV-Associated ACLF. Can J Gastroenterol Hepatol. 2021;2021:5545181.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei Wu H-D. Characteristics of systemic inflammation in hepatitis B-precipitated ACLF: differentiate it from No-ACLF. Liver Int. 2018;38(2):248–57.

    PubMed 

    Google Scholar 

  • Zhu B, Gao F, Zhang Q, Wang X, et al. Serum cytokine and chemokine profiles and disease prognosis in hepatitis B virus-related acute-on-chronic liver failure. Front Immunol. 2023;14:1133656.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu Z B Wangk, Ye Y N et al. Plasma Interleukin-10: a likely predictive marker for hepatitis b virus-related acute-on-chronic liver failure[J]. Hepat Mon 2014;14(7):e19370.

  • GARG V, GARG H. Granulocyte colony-stimulating factor mobilizes CD34 (+)cells and improves survival of patients with acute – on – chronic liver failure. Gastroenterology. 2012;142(3):505–12. e1.

    PubMed 

    Google Scholar 

  • Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol. 2018;15:738–52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Park JJ, Wong DK, Wahed AS, et al. Hepatitis B virus-specific and global T-cell dysfunction in chronic hepatitis B. Gastroenterology. 2016;150(3):684–e6955.

    PubMed 

    Google Scholar 

  • Gao S. Joshi ss,osiowy c,et al.chronic hepatitis B carriers with acute on chronic liver failure show increased HBV surface gene mutations, including immune escape variants. Virol J. 2017;14(1):203.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li J, Chen X, Zhou XP, et al. Defining the molecular basis of hepatitis B virus-related acute-on-chronic liver failure by transcriptome sequencing of patient peripheral blood mononuclearcells. Hepatology. 2018;68:191A.

    Google Scholar 

  • Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit Care Med. 2007;35(10):2408–16.

    PubMed 

    Google Scholar 

  • Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12(7):387–400.

    PubMed 

    Google Scholar 

  • Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201(7):1135–43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blazka M, Wilmer J, Holladay S, Wilson R, Luster M. Role of Proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 1995;133(1):43–52.

    PubMed 

    Google Scholar 

  • Ishida Y, Kondo T, Kimura A, Tsuneyama K, Takayasu T, Mukaida N. Opposite roles of neutrophils and macrophages in the pathogenesis of acetaminopheninduced acute liver injury. Eur J Immunol. 2006;36(4):1028–38.

    PubMed 

    Google Scholar 

  • Arroyo V, Moreau R, Jalan R, et al. Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis. J Hepatol. 2015;62(1 Suppl):s131–43.

    PubMed 

    Google Scholar 

  • Hernaez R, Sola E, Moreau R, et al. Acute-on-chronic liver failure: an update. Gut. 2017;66(3):541–53.

    PubMed 

    Google Scholar 

  • Yu X, Yang F, Zhang J,et, Al. BTLA contributes to acute-on-chronic liver failure infection and mortality through CD4 + T-cell exhaustion. Nat Commun. 2024;15(1):1835.

    PubMed 
    PubMed Central 

    Google Scholar 

  • ANTONIADES C G, BERRY P A, WENDON JA, et al. The importance of immune dysfunction in determining outcome in acute liver failure[J]. J Hepatol. 2008;49(5):845–61.

    PubMed 

    Google Scholar 

  • ARROYO V, ANGELI P, MOREAU R, et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis[J]. J Hepatol. 2021;74(3):670–85.

    PubMed 

    Google Scholar 

  • Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ. Human IL-17: a novel cytokine derived from T cells. J Immunol. 1995b;155:5483–6.

    PubMed 

    Google Scholar 

  • Bai Y, Zhou R, Fan J, et al. A novel bifunctional fusion protein (Anti-IL-17A-sST2) protects against acute liver failure, modulating the TLR4/MyD88 pathway and NLRP3 inflammasome activation. Biomedicines. 2024;12(5):1118.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan NH, Chen B, Du S, et al. Treg/Th17 cell balance in patients with hepatitis B Virus-Related Acute-on-Chronic liver failure at different disease stages. Biomed Res Int. 2021;2021:9140602.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoop JN, van der Molen RG, Janssen HL, et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 2005;41(4):771–8.

    PubMed 

    Google Scholar 

  • Liu GL, Zhou XL, Tao P. The role of Th17 / Treg cell balance in the clinical outcome of hepatitis B virus -associated acute-on-chronic liver failure. Immunol J. 2014;30(7):623–7.

    Google Scholar 

  • Zhang H, Huang LX, Chen ZX, et al. Effect of CD4 (+) CD25(+)Foxp3 (+)regulatory T cells on acute -on-chronic liver failure caused by hepatitis B infection. J Southeast Univ (Med Sci Edi). 2011;30(2):315–8.

    Google Scholar 

  • Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies – historical challenges and promising futures. Front Immunol. 2023;14:1190379.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.

    PubMed 

    Google Scholar 

  • Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 Blockade. Nat Med. 2018;24(6):731–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie YQ, Wenes M, Wang Y, Gao M, Hu X, Romero P et al. IL-10-expressing CAR T cells resist dysfunction and mediate durable clearance of solid tumors and metastases. Nat Biotechnol. 2024;42(11):1693–1704.

  • Guo H, Wang H, Yang H, et al. Metabolic reprogramming of terminally exhausted CD8(+) T cells by IL-10 enhances anti-tumor immunity. Nat Immunol. 2021;22:746–56.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang YW, Wang HP. From suppressor to enhancer: IL-10’s alternative role in CAR-T cell therapies against solid tumors. Cell Stem Cell. 2024;31(3):285–7.

    PubMed 

    Google Scholar 

  • Continue Reading