Innovative approaches to combat antibiotic resistance: integrating CRISPR/Cas9 and nanoparticles against biofilm-driven infections | BMC Medicine

  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–75.

    CAS 
    PubMed 

    Google Scholar 

  • Zuberi A, Ahmad N, Ahmad H, Saeed M, Ahmad I. Beyond antibiotics: CRISPR/Cas9 triumph over biofilm-associated antibiotic resistance infections. Front Cell Infect Microbiol. 2024;14:1408569.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol. 2019;10:913.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ekwebelem OC, Aleke J, Ofielu E, Nnorom-Dike O. CRISPR-Cas9 system: a revolutionary tool in the fight against antimicrobial resistance: retracted. Infect Microbes Dis. 2021;3(2):51–6.

    Google Scholar 

  • Fletcher RB, Stokes LD, Kelly IB 3rd, Henderson KM, Vallecillo-Viejo IC, Colazo JM, et al. Nonviral in vivo delivery of CRISPR-Cas9 using protein-agnostic, high-loading porous silicon and polymer nanoparticles. ACS Nano. 2023;17(17):16412–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel strategy to combat antibiotic resistance: a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 2021;13(3):352.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zohra T, Numan M, Ikram A, Salman M, Khan T, Din M, et al. Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms. 2021;9(5):954.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim M, Hwang Y, Lim S, Jang H-K, Kim H-O. Advances in nanoparticles as non-viral vectors for efficient delivery of CRISPR/Cas9. Pharmaceutics. 2024;16(9):1197.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther. 2018;1(3):1700033.

    Google Scholar 

  • Jiang Y, Wu R, Zhang W, Xin F, Jiang M. Construction of stable microbial consortia for effective biochemical synthesis. Trends Biotechnol. 2023;41(11):1430–41.

    CAS 
    PubMed 

    Google Scholar 

  • Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hay SI, Rao PC, Dolecek C, Day NP, Stergachis A, Lopez AD, Murray CJ: Measuring and mapping ‎the global burden of antimicrobial resistance. BMC medicine 2018, 16(1):78.‎

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–16.

    CAS 
    PubMed 

    Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.

    PubMed 

    Google Scholar 

  • van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras J-B, Barbu EM, et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio. 2015;6(6). https://doi.org/10.1128/mBio.01796-15.

  • Allegranzi B, Gayet-Ageron A, Damani N, Bengaly L, McLaws M-L, Moro M-L, et al. Global implementation of WHO’s multimodal strategy for improvement of hand hygiene: a quasi-experimental study. Lancet Infect Dis. 2013;13(10):843–51.

    PubMed 

    Google Scholar 

  • Tängdén T, Giske C. Global dissemination of extensively drug-resistant carbapenemase-producing E nterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med. 2015;277(5):501–12.

    PubMed 

    Google Scholar 

  • Laxminarayan R, Impalli I, Rangarajan R, Cohn J, Ramjeet K, Trainor BW, Strathdee S, Sumpradit N, ‎Berman D, Wertheim H: Expanding antibiotic, vaccine, and diagnostics development and access ‎to tackle antimicrobial resistance. The Lancet 2024;403(10443):2534–2550.‎

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155–64.

    PubMed 

    Google Scholar 

  • Dyar O, Pagani L, Pulcini C. Strategies and challenges of antimicrobial stewardship in long-term care facilities. Clin Microbiol Infect. 2015;21(1):10–9.

    CAS 
    PubMed 

    Google Scholar 

  • Coates AR, Halls G, Hu Y. Novel classes of antibiotics or more of the same? Br J Pharmacol. 2011;163(1):184–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandey P, Sirisha VL. From gene editing to biofilm busting: CRISPR-CAS9 against antibiotic resistance—a review. Cell Biochem Biophys. 2024;82:1–12.

    Google Scholar 

  • Juszczuk-Kubiak E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on quorum sensing (QS) signal-response system and innovative non-antibiotic strategies for their elimination. Int J Mol Sci. 2024;25(5):2655.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saharan B, Beniwal N, Duhan J. From formulation to function: a detailed review of microbial biofilms and their polymer-based extracellular substances. The Microbe. 2024;5:100194.

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.

    CAS 
    PubMed 

    Google Scholar 

  • Nichols W. Biofilms, antibiotics and penetration. Rev Med Microbiol. 1991;2:177–81.

    Google Scholar 

  • Xie Y, Liu H, Teng Z, Ma J, Liu G. Nanomaterial-enabled anti-biofilm strategies: new opportunities for treatment of bacterial infections. Nanoscale. 2025;17(10):5605–28.

    CAS 
    PubMed 

    Google Scholar 

  • Domenech M, García E, Moscoso M. Biofilm formation in Streptococcus pneumoniae. Microb Biotechnol. 2012;5(4):455–65.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6:1216.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004;230(1):13–8.

    CAS 
    PubMed 

    Google Scholar 

  • Já K. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 2010;89(3):205–18.

    Google Scholar 

  • Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2008;190(2):662–71.

    CAS 
    PubMed 

    Google Scholar 

  • Abebe GM. The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol. 2020;2020(1):1705814.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247–55.

    CAS 
    PubMed 

    Google Scholar 

  • Redfern J, Wallace J, van Belkum A, Jaillard M, Whittard E, Ragupathy R, et al. Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. BMC Genomics. 2021;22:1–16.

    Google Scholar 

  • Luo Y, Yang Q, Zhang D, Yan W. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J Microbiol Biotechnol. 2020;31(1):1.

    PubMed Central 

    Google Scholar 

  • Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R: Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clinical microbiology reviews 2018;31(1). https://doi.org/10.1128/cmr.00071-00017.

  • Kashani HH, Moniri R. Expression of recombinant pET22b-LysK-cysteine/histidine-dependent amidohydrolase/peptidase bacteriophage therapeutic protein in Escherichia coli BL21 (DE3). Osong Public Health Res Perspect. 2015;6(4):256–60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosseini ES, Moniri R, Goli YD, Kashani HH. Purification of antibacterial CHAPK protein using a self-cleaving fusion tag and its activity against methicillin-resistant Staphylococcus aureus. Probiotics Antimicrob Proteins. 2016;8(4):202–10.

    CAS 
    PubMed 

    Google Scholar 

  • Van Hoogstraten S, Kuik C, Arts J, Cillero-Pastor B: Molecular imaging of bacterial biofilms—a ‎systematic review. Critical reviews in microbiology 2024;50(6):971–992.‎

  • Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276–301.

    CAS 
    PubMed 

    Google Scholar 

  • Li P, Wan P, Zhao R, Chen J, Li X, Li J, et al. Targeted elimination of bla NDM-5 gene in Escherichia coli by conjugative CRISPR-Cas9 system. Infect Drug Resist. 2022. https://doi.org/10.2147/IDR.S357470.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55–61.

    CAS 
    PubMed 

    Google Scholar 

  • Vigouroux A, Bikard D. CRISPR tools to control gene expression in bacteria. Microbiol Mol Biol Rev. 2020;84(2). https://doi.org/10.1128/MMBR.00077-19.

  • Singh V, Gohil N, Ramirez Garcia R, Braddick D, Fofié CK. Recent advances in CRISPR-Cas9 genome editing technology for biological and biomedical investigations. J Cell Biochem. 2018;119(1):81–94.

    CAS 
    PubMed 

    Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39(21):9275–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnol. 2021;19:1–26.

    CAS 

    Google Scholar 

  • Zhang L, Wang L, Xie Y, Wang P, Deng S, Qin A, et al. Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angew Chem Int Ed Engl. 2019;58(36):12404–8.

    CAS 
    PubMed 

    Google Scholar 

  • Timin AS, Muslimov AR, Lepik KV, Epifanovskaya OS, Shakirova AI, Mock U, et al. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine. 2018;14(1):97–108.

    CAS 
    PubMed 

    Google Scholar 

  • Gratacap RL, Regan T, Dehler CE, Martin SAM, Boudinot P, Collet B, et al. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol. 2020;20(1):35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glass Z, Li Y, Xu Q. Nanoparticles for CRISPR-Cas9 delivery. Nat Biomed Eng. 2017;1(11):854–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sago CD, Lokugamage MP, Paunovska K, Vanover DA, Monaco CM, Shah NN, et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Natl Acad Sci U S A. 2018;115(42):E9944–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang R, Xu W, Shao S, Wang Q. Gene silencing through CRISPR interference in bacteria: current advances and future prospects. Front Microbiol. 2021;12:635227.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2(7):497–507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Y, Zhao G, Xu CF, Luo YL, Lu ZD, Wang J. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater Sci. 2018;6(6):1592–603.

    CAS 
    PubMed 

    Google Scholar 

  • Shahbazi R, Sghia-Hughes G, Reid JL, Kubek S, Haworth KG, Humbert O, et al. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat Mater. 2019;18(10):1124–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadkhoda H, Gholizadeh P, Kafil HS, Ghotaslou R, Pirzadeh T, Rezaee MA, et al. Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. Heliyon. 2024. https://doi.org/10.1016/j.heliyon.2024.e34692.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, et al. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed Pharmacother. 2022;151:113122.

    CAS 
    PubMed 

    Google Scholar 

  • Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85(1):227–64.

    CAS 
    PubMed 

    Google Scholar 

  • Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:353–61.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.

    CAS 
    PubMed 

    Google Scholar 

  • Angel PASRY, Raghul M, Gowsalya S, Paulkumar K, Murugan K: CRISPR interference system: a ‎potential strategy to inhibit pathogenic biofilm in the agri-food sector. In: CRISPR and RNAi ‎Systems. edn.: Elsevier; 2021:387–403.‎

  • Kim J-S, Cho D-H, Park M, Chung W-J, Shin D, Ko KS, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26(2):394–401.

    CAS 
    PubMed 

    Google Scholar 

  • Tao S, Chen H, Li N, Liang W. The application of the CRISPR-Cas system in antibiotic resistance. Infect Drug Resist. 2022. https://doi.org/10.2147/IDR.S370869.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Palacios Araya D, Palmer KL, Duerkop BA. Crispr-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathog. 2021;17(7):e1009672.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo M, Jia Y-Y, Jing Z-W, Li C, Zhou S-Y, Mei Q-B, et al. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids Surf, B. 2018;164:11–9.

    CAS 

    Google Scholar 

  • Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, et al. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med. 2023;8(2):e10381.

    CAS 
    PubMed 

    Google Scholar 

  • Gliźniewicz M, Miłek D, Olszewska P, Czajkowski A, Serwin N, Cecerska-Heryć E, et al. Advances in bacteriophage-mediated strategies for combating polymicrobial biofilms. Front Microbiol. 2024;14:1320345.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaman QU, Chu W, Hao M, Shi Y, Sun M, Sang S-F, et al. CRISPR/Cas9-mediated multiplex genome editing of JAGGED gene in Brassica napus L. Biomolecules. 2019;9(11):725.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bondy-Denomy J. Protein inhibitors of CRISPR-Cas9. ACS Chem Biol. 2018;13(2):417–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chabas H, Nicot A, Meaden S, Westra ER, Tremblay DM, Pradier L, et al. Variability in the durability of CRISPR-Cas immunity. Philos Trans R Soc Lond B Biol Sci. 2019;374(1772):20180097.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aslam B, Rasool M, Idris A, Muzammil S, Alvi RF, Khurshid M, et al. CRISPR-Cas system: a potential alternative tool to cope antibiotic resistance. Antimicrob Resist Infect Control. 2020;9:1–3.

    Google Scholar 

  • Ortiz-Cartagena C, Fernández-Grela P, Armán L, Blasco L, Pablo-Marcos D, Bleriot I, Fernández-‎García L, Ibarguren-Quiles C, Fernández-Cuenca F, Barrio-Pujante A:.The LAMP-CRISPR-Cas13a ‎technique for detecting the CBASS mechanism of phage resistance in bacteria. Frontiers in ‎Microbiology. 2025;16:1550534.‎

  • Gupta A, Saleh NM, Das R, Landis RF, Bigdeli A, Motamedchaboki K, et al. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures. 2017;1(1):015004.

    Google Scholar 

  • Fatima F, Siddiqui S, Khan WA. Nanoparticles as novel emerging therapeutic antibacterial agents in the antibiotics resistant era. Biol Trace Elem Res. 2021;199(7):2552–64.

    CAS 
    PubMed 

    Google Scholar 

  • Mulens-Arias V, Rojas JM, Barber DF. The intrinsic biological identities of iron oxide nanoparticles and their coatings: unexplored territory for combinatorial therapies. Nanomaterials. 2020;10(5):837.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacob EM, Borah A, Sakthi KD. CRISPR/Cas9 Nano-delivery Approaches for Targeted Gene Therapy. Pharmaceutical Nanobiotechnology for Targeted Therapy: Springer; 2022. p. 27–64.

    Google Scholar 

  • Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chavanpatil MD, Khdair A, Panyam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol. 2006;6(9–10):2651–63.

    CAS 
    PubMed 

    Google Scholar 

  • Anarjan FS. Active targeting drug delivery nanocarriers: Ligands. Nano Struct Nano Objects. 2019;19:100370.

    Google Scholar 

  • Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discovery. 2005;4(7):581–93.

    CAS 
    PubMed 

    Google Scholar 

  • Almeciga-Diaz CJ, Barrera LA. Design and applications of gene therapy vectors for mucopolysaccharidosis in Colombia. Gene Ther. 2020;27(1):104–7.

    CAS 
    PubMed 

    Google Scholar 

  • Leal AF, Cifuentes J, Torres CE, Suárez D, Quezada V, Gómez SC, et al. Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Sci Rep. 2022;12(1):15045.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano Micro Lett. 2023;15(1):44.

    Google Scholar 

  • Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev. 2014;78:14–27.

    CAS 
    PubMed 

    Google Scholar 

  • Slavin YN, Asnis J, Hńfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15:1–20.

    Google Scholar 

  • Nagarajan P, Subramaniyan V, Elavarasan V, Mohandoss N, Subramaniyan P, Vijayakumar S. Biofabricated aluminium oxide nanoparticles derived from Citrus aurantium L.: antimicrobial, anti-proliferation, and photocatalytic efficiencies. Sustainability. 2023;15(2):1743.

    CAS 

    Google Scholar 

  • Flores-López LZ, Espinoza-Gómez H, Somanathan R. Silver nanoparticles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. J Appl Toxicol. 2019;39(1):16–26.

    PubMed 

    Google Scholar 

  • Khan SS, Ullah I, Ullah S, An R, Xu H, Nie K, et al. Recent advances in the surface functionalization of nanomaterials for antimicrobial applications. Materials. 2021;14(22):6932.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol. 2009;43(19):7285–90.

    CAS 
    PubMed 

    Google Scholar 

  • Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed. 2007;2(2):129–41.

    CAS 

    Google Scholar 

  • Chen Z, Liu F, Chen Y, Liu J, Wang X, Chen AT, et al. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Adv Funct Mater. 2017;27(46):1703036.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol. 2023;41(12):1549–64.

    CAS 
    PubMed 

    Google Scholar 

  • Saw PE, Cui Gh, Xu X. Nanoparticles-mediated CRISPR/Cas gene editing delivery system. ChemMedChem. 2022;17(9):e202100777.

    CAS 
    PubMed 

    Google Scholar 

  • Pandey P, Vavilala SL. From gene editing to biofilm busting: CRISPR-CAS9 against antibiotic resistance—a review. Cell Biochem Biophys. 2024;82(2):549–60.

    CAS 
    PubMed 

    Google Scholar 

  • Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    CAS 
    PubMed 

    Google Scholar 

  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol. 2010;2(5):544–68.

    CAS 

    Google Scholar 

  • Fujii E, Kimura K, Mizoguchi K, Kato A, Takanashi H, Itoh Z, et al. Assessment of the carcinogenic potential of mitemcinal (GM-611): increased incidence of malignant lymphoma in a rat carcinogenicity study. Toxicol Appl Pharmacol. 2008;228(1):1–7.

    CAS 
    PubMed 

    Google Scholar 

  • Kara G, Calin GA, Ozpolat B. Rnai-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 2022;182:114113.

    CAS 
    PubMed 

    Google Scholar 

  • Tu K, Deng H, Kong L, Wang Y, Yang T, Hu Q, et al. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl Mater Interfaces. 2020;12(14):16018–30.

    CAS 
    PubMed 

    Google Scholar 

  • Xie R, Wang Y, Gong S. External stimuli-responsive nanoparticles for spatially and temporally controlled delivery of CRISPR-Cas genome editors. Biomater Sci. 2021;9(18):6012–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao Z, Ding C, Wang Y, Tan H, Li J. PH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomater Sci. 2019;7:1643–51.

    CAS 
    PubMed 

    Google Scholar 

  • Cheng MHY, Leung J, Zhang Y, Strong C, Basha G, Momeni A, et al. Induction of bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv Mater. 2023;35(31):2303370.

    CAS 

    Google Scholar 

  • Chan Y-T, Lu Y, Wu J, Zhang C, Tan H-Y, Bian Z-x, et al. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics. 2022;12(7):3329.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H, et al. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol. 2011;60(12):1827–34.

    CAS 
    PubMed 

    Google Scholar 

  • De Kievit T. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009;11(2):279–88.

    PubMed 

    Google Scholar 

  • Ates A, Tastan C, Ermertcan S. CRISPR-Cas9-mediated targeting of multidrug resistance genes in methicillin-resistant Staphylococcus aureus. CRISPR J. 2024;7(6):374–84.

    CAS 
    PubMed 

    Google Scholar 

  • Agha ASA, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon. 2025;11:e42013.

    Google Scholar 

  • Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361(6405):866–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, et al. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob. 2021;20:1–12.

    Google Scholar 

  • Abdul R, Wang M-R, Zhong C-J, Liu Y-Y, Hou W, Xiong H-R. An updated review on the antimicrobial and pharmacological properties of Uncaria (Rubiaceae). J Herbal Med. 2022;34:100573.

    Google Scholar 

  • Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6.

    CAS 
    PubMed 

    Google Scholar 

  • Wang S-W, Gao C, Zheng Y-M, Yi L, Lu J-C, Huang X-Y, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 2022;21(1):57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15–21.

    PubMed 

    Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.

    CAS 
    PubMed 

    Google Scholar 

  • Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, et al. Crispr-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun. 2019;10(1):5302.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rostøl JT, Xie W, Kuryavyi V, Maguin P, Kao K, Froom R, et al. The Card1 nuclease provides defence during type III CRISPR immunity. Nature. 2021;590(7847):624–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin J, Fuglsang A, Kjeldsen AL, Sun K, Bhoobalan-Chitty Y, Peng X. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features. Nucleic Acids Res. 2020;48(18):10470–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ, et al. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science. 2014;345(6203):1473–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karneyeva K, Kolesnik M, Livenskyi A, Zgoda V, Zubarev V, Trofimova A, et al. Interference requirements of type III CRISPR-Cas systems from Thermus thermophilus. J Mol Biol. 2024;436(6):168448.

    CAS 
    PubMed 

    Google Scholar 

  • Rostøl JT, Marraffini LA. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat Microbiol. 2019;4(4):656–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci. 2019;374(1772):20180087.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moya-Beltrán A, Makarova KS, Acuña LG, Wolf YI, Covarrubias PC, Shmakov SA, et al. Evolution of type IV CRISPR-Cas systems: insights from CRISPR loci in integrative conjugative elements of Acidithiobacillia. Crispr j. 2021;4(5):656–72.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res. 2020;48(4):2000–12.

    CAS 
    PubMed 

    Google Scholar 

  • Faure G, Makarova KS, Koonin EV. CRISPR-Cas: complex functional networks and multiple roles beyond adaptive immunity. J Mol Biol. 2019;431(1):3–20.

    CAS 
    PubMed 

    Google Scholar 

  • Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29.

    CAS 
    PubMed 

    Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15(3):169–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 2012;40(12):5569–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    PubMed 

    Google Scholar 

  • Ledford H. Major CRISPR patent decision won’t end tangled dispute. Nature. 2022;603(7901):373–4.

    CAS 
    PubMed 

    Google Scholar 

  • Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, et al. Functionally diverse type V CRISPR-Cas systems. Science. 2019;363(6422):88–91.

    CAS 
    PubMed 

    Google Scholar 

  • Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL, Gao S, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018;4:20.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li L, Li S, Wu N, Wu J, Wang G, Zhao G, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol. 2019;8(10):2228–37.

    CAS 
    PubMed 

    Google Scholar 

  • Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rananaware SR, Meister KS, Shoemaker GM, Vesco EK, Sandoval LSW, Lewis JG, et al. PAM-free diagnostics with diverse type V CRISPR-Cas systems. medRxiv. 2024.

  • Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. WIREs RNA. 2022;13(3):e1694.

    PubMed 

    Google Scholar 

  • O’Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems. J Mol Biol. 2019;431(1):66–87.

    CAS 
    PubMed 

    Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–4.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altae-Tran H, Kannan S, Suberski AJ, Mears KS, Demircioglu FE, Moeller L, et al. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science. 2023;382(6673):eadi1910.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. 2017;65(4):618-30.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong T, Luo Q. Advances in the RNA-targeting CRISPR-Cas systems. Sheng Wu Gong Cheng Xue Bao. 2023;39(4):1363–73.

    PubMed 

    Google Scholar 

  • Perčulija V, Lin J, Zhang B, Ouyang S. Functional features and current applications of the RNA-targeting type VI CRISPR-Cas systems. Adv Sci. 2021;8(13):2004685.

    Google Scholar 

  • Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell. 2018;70(2):327-39.e5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents. 2000;13(3):155–68.

    CAS 
    PubMed 

    Google Scholar 

  • Tyagi P, Wu P-C, Chancellor M, Yoshimura N, Huang L. Recent advances in intravesical drug/gene delivery. Mol Pharm. 2006;3(4):369–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang Y, Wang D, Lü P, Ma S, Chen K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep. 2023;50(4):3723–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    PubMed 

    Google Scholar 

  • Continue Reading