GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the global burden of disease study 2019. Lancet 400, 2221–2248 (2022). This important study is the first comprehensive assessment of antimicrobial resistance, establishing the contribution of MRSA as one of the most important causes of death due to antimicrobial-resistant infection.
van der Vaart, T. W. et al. The utility of risk factors to define complicated Staphylococcus aureus bacteremia in a setting with low methicillin-resistant S. aureus prevalence. Clin. Infect. Dis. 78, 846–854 (2024).
Google Scholar
Bai, A. D. et al. Staphylococcus aureus bacteraemia mortality: a systematic review and meta-analysis. Clin. Microbiol. Infect. 28, 1076–1084 (2022).
Google Scholar
Piewngam, P. & Otto, M. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe 5, e606–e618 (2024).
Google Scholar
Kuehnert, M. J. et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J. Infect. Dis. 193, 172–179 (2006).
Google Scholar
von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 344, 11–16 (2001).
Albrich, W. C. & Harbarth, S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect. Dis. 8, 289–301 (2008).
Google Scholar
Kirkland, K. B. & Weinstein, J. M. Adverse effects of contact isolation. Lancet 354, 1177–1178 (1999).
Google Scholar
Stelfox, H. T., Bates, D. W. & Redelmeier, D. A. Safety of patients isolated for infection control. JAMA 290, 1899–1905 (2003).
Google Scholar
Leonhardt, K. K. et al. Clinical effectiveness and cost benefit of universal versus targeted methicillin-resistant Staphylococcus aureus screening upon admission in hospitals. Infect. Control Hosp. Epidemiol. 32, 797–803 (2011).
Google Scholar
Huang, S. S. et al. Impact of routine intensive care unit surveillance cultures and resultant barrier precautions on hospital-wide methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 43, 971–978 (2006).
Google Scholar
van Trijp, M. J. et al. Successful control of widespread methicillin-resistant Staphylococcus aureus colonization and infection in a large teaching hospital in the Netherlands. Infect. Control Hosp. Epidemiol. 28, 970–975 (2007).
Google Scholar
Rammelkamp, C. H. & Maxon, T. Resistance of Staphylococcus aureus to the action of penicillin. Exp. Biol. Med. 51, 3 (1942).
Harkins, C. P. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18, 130 (2017).
Google Scholar
Jernigan, J. A. et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N. Engl. J. Med. 382, 1309–1319 (2020). This important epidemiological study of 890 US hospitals determined that MRSA is the most frequent multidrug-resistant pathogen encountered in the US health-care system.
Google Scholar
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).
Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).
Google Scholar
Cheung, G. Y. C., Bae, J. S. & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12, 547–569 (2021).
Google Scholar
Skabytska, Y. et al. Cutaneous innate immune sensing of Toll-like receptor 2-6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity 41, 762–775 (2014).
Google Scholar
Patot, S. et al. The TIR homologue lies near resistance genes in Staphylococcus aureus, coupling modulation of virulence and antimicrobial susceptibility. PLoS Pathog. 13, e1006092 (2017).
Google Scholar
Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe 7, 38–49 (2010).
Google Scholar
Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866 (2013).
Google Scholar
Rooijakkers, S. H. et al. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat. Immunol. 10, 721–727 (2009).
Google Scholar
Wilke, G. A. & Bubeck Wardenburg, J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl Acad. Sci. USA 107, 13473–13478 (2010).
Google Scholar
Tromp, A. T. et al. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton–Valentine leukocidin. Nat. Microbiol. 3, 708–717 (2018).
Google Scholar
Tam, K. et al. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J. Exp. Med. 217, e20190541 (2020).
Google Scholar
Jorch, S. K. et al. Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination. J. Clin. Invest. 129, 4643–4656 (2019).
Google Scholar
Cruz, A. R. et al. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc. Natl Acad. Sci. USA 118, e2016772118 (2021).
Google Scholar
Gerlach, D. et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563, 705–709 (2018).
Google Scholar
Hanzelmann, D. et al. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat. Commun. 7, 12304 (2016).
Google Scholar
Chen, X. & Alonzo, F. 3rd Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc. Natl Acad. Sci. USA 116, 3764–3773 (2019).
Google Scholar
Liu, H. et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe 22, 653–666 e655 (2017).
Google Scholar
Matsumoto, M. et al. Interaction between Staphylococcus Agr virulence and neutrophils regulates pathogen expansion in the skin. Cell Host Microbe 29, 930–940 e934 (2021).
Google Scholar
Voisin, B. et al. Macrophage-mediated extracellular matrix remodeling controls host Staphylococcus aureus susceptibility in the skin. Immunity 56, 1561–1577 e1569 (2023).
Google Scholar
Beesetty, P. et al. Tissue specificity drives protective immunity against Staphylococcus aureus infection. Front. Immunol. 13, 795792 (2022).
Google Scholar
Lee, B., Olaniyi, R., Kwiecinski, J. M. & Wardenburg, J. B. Staphylococcus aureus toxin suppresses antigen-specific T cell responses. J. Clin. Invest. 130, 1122–1127 (2020).
Google Scholar
Van Roy, Z. et al. Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection. Nat. Commun. 15, 8965 (2024).
Google Scholar
de Vor, L., Rooijakkers, S. H. M. & van Strijp, J. A. G. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett. 594, 2556–2569 (2020).
Google Scholar
Ricciardi, B. F. et al. Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: biofilm and beyond. Curr. Rev. Musculoskelet. Med. 11, 389–400 (2018).
Google Scholar
Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).
Google Scholar
Pettygrove, B. A. et al. Delayed neutrophil recruitment allows nascent Staphylococcus aureus biofilm formation and immune evasion. Biomaterials 275, 120775 (2021).
Google Scholar
Li, M. et al. Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection. npj Biofilms Microbiomes 10, 102 (2024).
Google Scholar
Staats, A. et al. Synovial fluid-induced aggregation occurs across Staphylococcus aureus clinical isolates and is mechanistically independent of attached biofilm formation. Microbiol. Spectr. 9, e0026721 (2021).
Google Scholar
He, L. et al. Resistance to leukocytes ties benefits of quorum sensing dysfunctionality to biofilm infection. Nat. Microbiol. 4, 1114–1119 (2019).
Google Scholar
Bhattacharya, M. et al. Leukocidins and the nuclease nuc prevent neutrophil-mediated killing of Staphylococcus aureus biofilms. Infect. Immun. 88, e00372–20 (2020).
Google Scholar
Bhattacharya, M. et al. Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proc. Natl Acad. Sci. USA 115, 7416–7421 (2018).
Google Scholar
Scherr, T. D. et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. mBio 6, e01021–15 (2015).
Google Scholar
Thurlow, L. R. et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 186, 6585–6596 (2011).
Google Scholar
Yamada, K. J. et al. Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathog. 16, e1008354 (2020).
Google Scholar
Heim, C. E. et al. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J. Immunol. 192, 3778–3792 (2014).
Google Scholar
Aldrich, A. L., Horn, C. M., Heim, C. E., Korshoj, L. E. & Kielian, T. Transcriptional diversity and niche-specific distribution of leukocyte populations during Staphylococcus aureus craniotomy-associated biofilm infection. J. Immunol. 206, 751–765 (2021).
Google Scholar
Heim, C. E., Vidlak, D. & Kielian, T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J. Leukoc. Biol. 98, 1003–1013 (2015).
Google Scholar
Tebartz, C. et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. J. Immunol. 194, 1100–1111 (2015).
Google Scholar
Stoll, H. et al. Staphylococcal enterotoxins dose-dependently modulate the generation of myeloid-derived suppressor cells. Front. Cell Infect. Microbiol. 8, 321 (2018).
Google Scholar
Heim, C. E. et al. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 5, 1271–1284 (2020).
Google Scholar
Mba Medie, F. et al. Genetic variation of DNA methyltransferase-3A contributes to protection against persistent MRSA bacteremia in patients. Proc. Natl Acad. Sci. USA 116, 20087–20096 (2019).
Google Scholar
Chang, Y.-L. et al. Human DNA methylation signatures differentiate persistent from resolving MRSA bacteremia. Proc. Natl Acad. Sci. USA 118, e2000663118 (2021).
Google Scholar
Van Roy, Z., Shi, W., Kak, G., Duan, B. & Kielian, T. Epigenetic regulation of leukocyte inflammatory mediator production dictates Staphylococcus aureus craniotomy infection outcome. J. Immunol. 211, 414–428 (2023).
Google Scholar
Lacey, K. A. et al. Secreted mammalian DNases protect against systemic bacterial infection by digesting biofilms. J. Exp. Med. 220, e20221086 (2023).
Google Scholar
Rosenberg, G., Riquelme, S., Prince, A. & Avraham, R. Immunometabolic crosstalk during bacterial infection. Nat. Microbiol. 7, 497–507 (2022).
Google Scholar
Arumugam, P. & Kielian, T. Metabolism shapes immune responses to Staphylococcus aureus. J. Innate Immun. 16, 12–30 (2024).
Google Scholar
Horn, C. M. et al. Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/HIF1a axis. J. Clin. Invest. 134, e174051 (2024).
Google Scholar
Dietrich, O. et al. Dysregulated immunometabolism is associated with the generation of myeloid-derived suppressor cells in Staphylococcus aureus chronic infection. J. Innate Immun. 14, 257–274 (2022).
Google Scholar
Van Roy, Z. et al. Single-cell profiling reveals a conserved role for hypoxia-inducible factor signaling during human craniotomy infection. Cell Rep. Med. 5, 101790 (2024).
Google Scholar
Vozza, E. G. et al. Staphylococcus aureus suppresses the pentose phosphate pathway in human neutrophils via the adenosine receptor A2aR to enhance intracellular survival. mBio 15, e0257123 (2024).
Google Scholar
Reynolds, M. B. et al. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during staphylococcal infection. Cell Rep. 43, 114607 (2024).
Google Scholar
Wise, A. D. et al. Mitochondria sense bacterial lactate and drive release of neutrophil extracellular traps. Cell Host Microbe 33, 341–357 e349 (2025).
Google Scholar
Lesbats, J. et al. Macrophages recycle phagocytosed bacteria to fuel immunometabolic responses. Nature 640, 524–533 (2025).
Google Scholar
Tomlinson, K. L. et al. Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nat. Commun. 12, 1399 (2021). This paper reports how. S. aureus–immune metabolic crosstalk promotes biofilm formation by inducing host itaconate, which inhibits S. aureus glycolysis, which reprogrammes S. aureus metabolism to favour extracellular polysaccharide production.
Google Scholar
Peace, C. G. & O’Neill, L. A. The role of itaconate in host defense and inflammation. J. Clin. Invest. 132, e148548 (2022).
Google Scholar
Tomlinson, K. L. et al. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Rep. 42, 112064 (2023).
Google Scholar
Makowski, L., Chaib, M. & Rathmell, J. C. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295, 5–14 (2020).
Google Scholar
Vuscan, P., Kischkel, B., Joosten, L. A. B. & Netea, M. G. Trained immunity: general and emerging concepts. Immunol. Rev. 323, 164–185 (2024).
Google Scholar
Wong Fok Lung, T. et al. Staphylococcus aureus small colony variants impair host immunity by activating host cell glycolysis and inducing necroptosis. Nat. Microbiol. 5, 141–153 (2020).
Google Scholar
Ferreira, A. V. et al. Dimethyl itaconate induces long-term innate immune responses and confers protection against infection. Cell Rep. 42, 112658 (2023).
Google Scholar
Carlile, S. R. et al. Staphylococcus aureus induced trained immunity in macrophages confers heterologous protection against Gram-negative bacterial infection. iScience 27, 111284 (2024).
Google Scholar
Radhouani, M. et al. Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation. Sci. Immunol. 10, eadp6231 (2025).
Google Scholar
Wu, S. W., de Lencastre, H. & Tomasz, A. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol. 183, 2417–2424 (2001).
Google Scholar
Fuda, C. et al. Shared functional attributes between the mecA gene product of Staphylococcus sciuri and penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Biochemistry 46, 8050–8057 (2007).
Google Scholar
Tsubakishita, S., Kuwahara-Arai, K., Sasaki, T. & Hiramatsu, K. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 54, 4352–4359 (2010).
Google Scholar
Crisostomo, M. I. et al. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc. Natl Acad. Sci. USA 98, 9865–9870 (2001).
Google Scholar
Centers for Disease Control and Prevention. Reduced susceptibility of Staphylococcus aureus to vancomycin — Japan, 1996. MMWR Morb. Mortal. Wkly Rep. 46, 624–626 (1997).
Centers for Disease Control and Prevention. Vancomycin-resistant Staphylococcus aureus — Pennsylvania, 2002. MMWR Morb. Mortal. Wkly Rep. 51, 902 (2002).
Sakoulas, G. et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J. Clin. Microbiol. 42, 2398–2402 (2004).
Google Scholar
Holmes, N. E. et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J. Infect. Dis. 204, 340–347 (2011).
Google Scholar
Cui, L. et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol. 41, 5–14 (2003).
Google Scholar
Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H. & Hiramatsu, K. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother. 44, 2276–2285 (2000).
Google Scholar
Gomes, D. M., Ward, K. E. & LaPlante, K. L. Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus. Pharmacotherapy 35, 424–432 (2015).
Google Scholar
Yun, J. H. et al. Risk factors for vancomycin treatment failure in heterogeneous vancomycin-intermediate Staphylococcus aureus bacteremia. Microbiol. Spectr. 12, e0033324 (2024).
Google Scholar
Claeys, K. C. et al. Pneumonia caused by methicillin-resistant Staphylococcus aureus: does vancomycin heteroresistance matter? Antimicrob. Agents Chemother. 60, 1708–1716 (2016).
Google Scholar
Chang, S. et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348, 1342–1347 (2003).
Google Scholar
Kwun, M. J., Novotna, G., Hesketh, A. R., Hill, L. & Hong, H. J. In vivo studies suggest that induction of VanS-dependent vancomycin resistance requires binding of the drug to d-Ala-d-Ala termini in the peptidoglycan cell wall. Antimicrob. Agents Chemother. 57, 4470–4480 (2013).
Google Scholar
Cong, Y., Yang, S. & Rao, X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J. Adv. Res. 21, 169–176 (2020).
Google Scholar
MacFarquhar, J. K. et al. Identification and characterization of vancomycin-resistant Staphylococcus aureus CC45/USA600, North Carolina, USA, 2021. Emerg. Infect. Dis. 31, 194–196 (2025).
Google Scholar
Blechman, S. E. & Wright, E. S. Vancomycin-resistant Staphylococcus aureus (VRSA) can overcome the cost of antibiotic resistance and may threaten vancomycin’s clinical durability. PLoS Pathog. 20, e1012422 (2024).
Google Scholar
Wagner, J. L. et al. Counting the cost of daptomycin versus vancomycin in hospitalized patients: a cost minimization analysis. Open Forum Infect. Dis. 11, ofae217 (2024).
Google Scholar
Pogliano, J., Pogliano, N. & Silverman, J. A. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J. Bacteriol. 194, 4494–4504 (2012).
Google Scholar
Muller, A. et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc. Natl Acad. Sci. USA 113, E7077–E7086 (2016).
Google Scholar
Bayer, A. S., Schneider, T. & Sahl, H. G. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann. N. Y. Acad. Sci. 1277, 139–158 (2013).
Google Scholar
Ernst, C. M. & Peschel, A. MprF-mediated daptomycin resistance. Int. J. Med. Microbiol. 309, 359–363 (2019).
Google Scholar
Gasch, O. et al. Emergence of resistance to daptomycin in a cohort of patients with methicillin-resistant Staphylococcus aureus persistent bacteraemia treated with daptomycin. J. Antimicrob. Chemother. 69, 568–571 (2014).
Google Scholar
Sharma, M., Riederer, K., Chase, P. & Khatib, R. High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 27, 433–437 (2008).
Google Scholar
Moise, P. A., North, D., Steenbergen, J. N. & Sakoulas, G. Susceptibility relationship between vancomycin and daptomycin in Staphylococcus aureus: facts and assumptions. Lancet Infect. Dis. 9, 617–624 (2009).
Google Scholar
Fowler, V. G. Jr. et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355, 653–665 (2006).
Google Scholar
Swaney, S. M., Aoki, H., Ganoza, M. C. & Shinabarger, D. L. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother. 42, 3251–3255 (1998).
Google Scholar
Gu, B., Kelesidis, T., Tsiodras, S., Hindler, J. & Humphries, R. M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 68, 4–11 (2013).
Google Scholar
Stefani, S., Bongiorno, D., Mongelli, G. & Campanile, F. Linezolid resistance in Staphylococci. Pharmaceuticals 3, 1988–2006 (2010).
Google Scholar
Steward, C. D. et al. Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. J. Clin. Microbiol. 43, 1716–1721 (2005).
Google Scholar
Morosini, M. I., Diez-Aguilar, M. & Canton, R. Mechanisms of action and antimicrobial activity of ceftobiprole. Rev. Esp. Quimioter. 32, 3–10 (2019).
Google Scholar
Vazquez, J. A. et al. Ceftaroline fosamil for the treatment of Staphylococcus aureus bacteremia secondary to acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia. Infect. Dis. Clin. Pract. 23, 39–43 (2015).
Holland, T. L., Bayer, A. S. & Fowler, V. G. Persistent methicilin-resistant Staphylococcus aureus bacteremia: resetting the clock for optimal management. Clin. Infect. Dis. 75, 1668–1674 (2022).
Google Scholar
Liapikou, A., Cilloniz, C. & Torres, A. Ceftobiprole for the treatment of pneumonia: a European perspective. Drug Des. Dev. Ther. 9, 4565–4572 (2015).
Google Scholar
Holland, T. L. et al. Ceftobiprole for treatment of complicated Staphylococcus aureus bacteremia. N. Engl. J. Med. 389, 1390–1401 (2023).
Google Scholar
Long, S. W. et al. PBP2a mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 58, 6668–6674 (2014).
Google Scholar
Zhang, H. et al. Global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam: a surveillance study from the ATLAS program (2012–2016). Antimicrob. Resist. Infect. Control 9, 166 (2020).
Google Scholar
Pfaller, M. A. et al. Ceftobiprole activity against Gram-positive and -negative pathogens collected from the United States in 2006 and 2016. Antimicrob. Agents Chemother. 63, e01566-18 (2019).
Google Scholar
Conlon, B. P. et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat. Microbiol. 1, 16051 (2016).
Google Scholar
Zalis, E. A. et al. Stochastic variation in expression of the tricarboxylic acid cycle produces persister cells. mBio 10, e01930–19 (2019).
Google Scholar
Rowe, S. E. et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat. Microbiol. 5, 282–290 (2020).
Google Scholar
Walters, M. C. et al. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317–323 (2003).
Google Scholar
Pabst, B., Pitts, B., Lauchnor, E. & Stewart, P. S. Gel-entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression. Antimicrob. Agents Chemother. 60, 6294–6301 (2016).
Google Scholar
Freiberg, J. A. et al. Restriction of arginine induces antibiotic tolerance in Staphylococcus aureus. Nat. Commun. 15, 6734 (2024). This paper shows how limitation of an essential nutrient can inhibit protein synthesis and lead to antibiotic tolerance in biofilms, both in vitro and in a mouse infection model.
Google Scholar
Ledger, E. V. K. & Edwards, A. M. Growth arrest of Staphylococcus aureus induces daptomycin tolerance via cell wall remodelling. mBio 14, e0355822 (2023).
Google Scholar
Ledger, E. V. K., Mesnage, S. & Edwards, A. M. Human serum triggers antibiotic tolerance in Staphylococcus aureus. Nat. Commun. 13, 2041 (2022).
Google Scholar
Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018). This study is a great example of how persisters can be targeted by antibiotics with mechanisms of action that are not reliant on active antibiotic targets, in this case the retinoid antibiotics destabilize the membrane resulting in death of actively growing bacteria and persister cells.
Google Scholar
Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013).
Google Scholar
Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).
Google Scholar
Radlinski, L. C. et al. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem. Biol. 26, 1355–1364.e4 (2019).
Google Scholar
Silverman, J. A., Mortin, L. I., Vanpraagh, A. D., Li, T. & Alder, J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis. 191, 2149–2152 (2005).
Google Scholar
Rowe, S. E., Beam, J. E. & Conlon, B. P. Recalcitrant Staphylococcus aureus infections: obstacles and solutions. Infect. Immun. 89, e00694–20 (2021).
Google Scholar
Sakoulas, G. et al. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J. Mol. Med. 92, 139–149 (2014).
Google Scholar
Peyrusson, F. et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat. Commun. 11, 2200 (2020).
Google Scholar
Surewaard, B. G. et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).
Google Scholar
Barcia-Macay, M., Seral, C., Mingeot-Leclercq, M. P., Tulkens, P. M. & Van Bambeke, F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob. Agents Chemother. 50, 841–851 (2006).
Google Scholar
Lehar, S. M. et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).
Google Scholar
Kahl, B. C., Becker, K. & Loffler, B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin. Microbiol. Rev. 29, 401–427 (2016).
Google Scholar
Flannagan, R. S., Heit, B. & Heinrichs, D. E. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell Microbiol. 18, 514–535 (2016).
Google Scholar
Abuaita, B. H., Schultz, T. L. & O’Riordan, M. X. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus. Cell Host Microbe 24, 625–636 e625 (2018).
Google Scholar
Gaupp, R., Ledala, N. & Somerville, G. A. Staphylococcal response to oxidative stress. Front. Cell Infect. Microbiol. 2, 33 (2012).
Google Scholar
Helaine, S., Conlon, B. P., Davis, K. M. & Russell, D. G. Host stress drives tolerance and persistence: the bane of anti-microbial therapeutics. Cell Host Microbe 32, 852–862 (2024).
Google Scholar
Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
Holland, T. L., Arnold, C. & Fowler, V. G. Jr. Clinical management of Staphylococcus aureus bacteremia: a review. JAMA 312, 1330–1341 (2014).
Google Scholar
Tong, S. Y. C. et al. The Staphylococcus aureus network adaptive platform trial protocol: new tools for an old foe. Clin. Infect. Dis. 75, 2027–2034 (2022). The CAMERA2 trial demonstrated that combination therapy with either daptomycin or vancomycin and an antistaphylococcal β-lactam did not improve clinical outcomes in patients with. S. aureus bacteraemia.
Google Scholar
Dolby, H. W., Clifford, S. A., Laurenson, I. F., Fowler, V. G. & Russell, C. D. Heterogeneity in Staphylococcus aureus bacteraemia clinical trials complicates interpretation of findings. J. Infect. Dis. 226, 723–728 (2022).
Google Scholar
Westgeest, A. C. et al. Global differences in the management of Staphylococcus aureus bacteremia: no international standard of care. Clin. Infect. Dis. 77, 1092–1101 (2023).
Google Scholar
Rose, W., Fantl, M., Geriak, M., Nizet, V. & Sakoulas, G. Current paradigms of combination therapy in methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: does it work, which combination, and for which patients? Clin. Infect. Dis. 73, 2353–2360 (2021).
Google Scholar
Tong, S. Y. C. et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal beta-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial. JAMA 323, 527–537 (2020).
Google Scholar
Grillo, S. et al. Cloxacillin plus fosfomycin versus cloxacillin alone for methicillin-susceptible Staphylococcus aureus bacteremia: a randomized trial. Nat. Med. 29, 2518–2525 (2023).
Google Scholar
Pujol, M. et al. Daptomycin plus fosfomycin versus daptomycin alone for methicillin-resistant Staphylococcus aureus bacteremia and endocarditis: a randomized clinical trial. Clin. Infect. Dis. 72, 1517–1525 (2021).
Google Scholar
Thwaites, G. E. et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 391, 668–678 (2018). This paper reports that ARREST showed no benefit in adjunctive rifampin in the treatment of MRSA bacteraemia.
Google Scholar
Osmon, D. R. et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 56, e1–e25 (2013).
Google Scholar
Aydin, O. et al. Rifampin-accompanied antibiotic regimens in the treatment of prosthetic joint infections: a frequentist and Bayesian meta-analysis of current evidence. Eur. J. Clin. Microbiol. Infect. Dis. 40, 665–671 (2021).
Google Scholar
Scheper, H. et al. Outcome of debridement, antibiotics, and implant retention for staphylococcal hip and knee prosthetic joint infections, focused on rifampicin use: a systematic review and meta-analysis. Open Forum Infect. Dis. 8, ofab298 (2021).
Google Scholar
El Zein, S. et al. Rifampin based therapy for patients with Staphylococcus aureus native vertebral osteomyelitis: a systematic review and meta-analysis. Clin. Infect. Dis. 78, 40–47 (2024).
Google Scholar
Baddour, L. M. et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 132, 1435–1486 (2015).
Google Scholar
Delgado, V. et al. 2023 ESC guidelines for the management of endocarditis. Eur. Heart J. 44, 3948–4042 (2023).
Google Scholar
Chuard, C., Herrmann, M., Vaudaux, P., Waldvogel, F. A. & Lew, D. P. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant Staphylococcus aureus by antimicrobial combinations. Antimicrob. Agents Chemother. 35, 2611–2616 (1991).
Google Scholar
Lucet, J. C. et al. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 34, 2312–2317 (1990).
Google Scholar
Ryder, J. H. et al. Deconstructing the dogma: systematic literature review and meta-analysis of adjunctive gentamicin and rifampin in staphylococcal prosthetic valve endocarditis. Open Forum Infect. Dis. 9, ofac583 (2022).
Google Scholar
Zasowski, E. J. et al. Multicenter observational study of ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob. Agents Chemother. 61, e02015-16 (2017).
Google Scholar
Geriak, M. et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 63, e02483-18 (2019).
Google Scholar
McCreary, E. K. et al. Multicenter cohort of patients with methicillin-resistant Staphylococcus aureus bacteremia receiving daptomycin plus ceftaroline compared with other MRSA treatments. Open Forum Infect. Dis. 7, ofz538 (2020).
Google Scholar
Ulloa, E. R. et al. Cefazolin and ertapenem salvage therapy rapidly clears persistent methicillin-susceptible Staphylococcus aureus bacteremia. Clin. Infect. Dis. 71, 1413–1418 (2020).
Google Scholar
Kalil, A. C., Holubar, M., Deresinski, S. & Chambers, H. F. Is daptomycin plus ceftaroline associated with better clinical outcomes than standard of care monotherapy for Staphylococcus aureus bacteremia? Antimicrob. Agents Chemother. 63, e00900-19 (2019).
Google Scholar
Nannini, E. C. et al. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob. Agents Chemother. 53, 3437–3441 (2009).
Google Scholar
S. aureus Network Adaptive Platform Trial Group. Cefazolin versus (flu)cloxacillin for the treatment of penicillin-resistant, methicillin-susceptible Staphylococcus aureus bacteraemia: a randomised controlled trial within the S. aureus network adaptive platform (SNAP). In Proc. 35th Congress of the European Society of Clinical Microbiology and Infectious Diseases 4889 (ESCMID, 2025).
Iversen, K. et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 380, 415–424 (2019). The POET study is one of the few RCTs to examine the efficacy of oral antibiotics for the treatment of left-sided endocarditis and showing that oral therapy is non-inferior to intravenous antibiotics.
Google Scholar
Kaasch, A. J. et al. Efficacy and safety of an early oral switch in low-risk Staphylococcus aureus bloodstream infection (SABATO): an international, open-label, parallel-group, randomised, controlled, non-inferiority trial. Lancet Infect. Dis. 24, 523–534 (2024). The SABATO trial shows that oral switch is non-inferior to intraveous antibiotics in low-risk patients with S. aureus bacteraemia.
Google Scholar
Li, H. K. et al. Oral versus intravenous antibiotics for bone and joint infection. N. Engl. J. Med. 380, 425–436 (2019). The OVIVA trial demonstrates that oral therapy is non-inferior to intravenous therapy for the treatment of bone and joint infections.
Google Scholar
Liu, K. et al. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front. Cell Infect. Microbiol. 14, 1336821 (2024).
Google Scholar
Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).
Google Scholar
Ferry, T. et al. Phage therapy as adjuvant to conservative surgery and antibiotics to salvage patients with relapsing S. aureus prosthetic knee infection. Front. Med. 7, 570572 (2020).
Ramirez-Sanchez, C. et al. Successful treatment of Staphylococcus aureus prosthetic joint infection with bacteriophage therapy. Viruses 13, 1182 (2021).
Google Scholar
Doub, J. B. et al. Salphage: salvage bacteriophage therapy for recalcitrant MRSA prosthetic joint infection. Antibiotics 11, 616 (2022).
Google Scholar
Schoeffel, J. et al. Successful use of salvage bacteriophage therapy for a recalcitrant MRSA knee and hip prosthetic joint infection. Pharmaceuticals 15, 177 (2022).
Google Scholar
Petrovic Fabijan, A. et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 5, 465–472 (2020).
Google Scholar
Staphylococcus aureus phage product candidate. Armata Pharmaceuticals https://www.armatapharma.com/pipeline/ap-sa02/ (2025).
Fowler, V. G. Jr et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J. Clin. Invest. 130, 3750–3760 (2020).
Google Scholar
Fowler, V. G. Jr. et al. Exebacase in addition to standard-of-care antibiotics for Staphylococcus aureus bloodstream infections and right-sided infective endocarditis: a phase 3, superiority-design, placebo-controlled, randomized clinical trial (DISRUPT). Clin. Infect. Dis. 78, 1473–1481 (2024). This is the first RCT to examine the efficacy of adjunctive phage lysin for treatment of S. aureus bacteraemia and right-sided endocarditis.
Google Scholar
FDA news release: “FDA approves new antibiotic for three different uses”. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibiotic-three-different-uses (2024).
Dunne, M. W. et al. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob. Agents Chemother. 59, 1849–1855 (2015).
Google Scholar
Turner, N. A. et al. Dalbavancin for treatment of Staphylococcus aureus bacteremia: the DOTS randomized clinical trial. JAMA https://doi.org/10.1001/jama.2025.12543 (2025).
O’Brien, E. C. & McLoughlin, R. M. Considering the ‘Alternatives’ for next-generation anti-Staphylococcus aureus vaccine development. Trends Mol. Med. 25, 171–184 (2019).
Google Scholar
Wong Fok Lung, T. et al. Staphylococcus aureus adaptive evolution: recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front. Cell Infect. Microbiol. 12, 1060810 (2022).
Google Scholar
Caldera, J. R. et al. The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches. Cell Rep. Med. 5, 101360 (2024).
Google Scholar
Tsai, C. M. et al. Non-protective immune imprint underlies failure of Staphylococcus aureus IsdB vaccine. Cell Host Microbe 30, 1163–1172 e1166 (2022). This report provides evidence that prior S. aureus exposure elicits non-productive antibody responses that blunt opsonophagocytosis with an IsdB vaccine platform, which highlights the importance of understanding immune baseline and antigen experience in the context of S. aureus vaccine design.
Google Scholar
Teymournejad, O., Li, Z., Beesetty, P., Yang, C. & Montgomery, C. P. Toxin expression during Staphylococcus aureus infection imprints host immunity to inhibit vaccine efficacy. npj Vaccines 8, 3 (2023).
Google Scholar
Tsai, C. M. et al. Pathobiont-driven antibody sialylation through IL-10 undermines vaccination. J. Clin. Invest. 134, e179563 (2024).
Google Scholar
Kelly, A. M. et al. IL-10 inhibition during immunization improves vaccine-induced protection against Staphylococcus aureus infection. JCI Insight 9, e178216 (2024).
Google Scholar
Poolman, J. T. et al. A SpA+ LukAB vaccine targeting Staphylococcus aureus evasion factors restricts infection in two minipig infection models. npj Vaccines 10, 78 (2025).
Google Scholar
Pulendran, B. Integrated organ immunity: a path to a universal vaccine. Nat. Rev. Immunol. 24, 81–82 (2024).
Google Scholar
Bagnoli, F. et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc. Natl Acad. Sci. USA 112, 3680–3685 (2015).
Google Scholar
Fritz, S. A. & Bubeck Wardenburg, J. A path forward for Staphylococcus aureus vaccine development. J. Exp. Med. 221, e20240002 (2024).
Google Scholar
Chen, X., Schneewind, O. & Missiakas, D. Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 119, e2114478119 (2022).
Google Scholar
Buckley, P. T. et al. Multivalent human antibody–centyrin fusion protein to prevent and treat Staphylococcus aureus infections. Cell Host Microbe 31, 751–765 e711 (2023).
Google Scholar
Weems, J. J. Jr. et al. Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 50, 2751–2755 (2006).
Google Scholar
Rupp, M. E. et al. Phase II, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti-Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 51, 4249–4254 (2007).
Google Scholar
Salgado-Pabon, W. & Schlievert, P. M. Models matter: the search for an effective Staphylococcus aureus vaccine. Nat. Rev. Microbiol. 12, 585–591 (2014).
Google Scholar
AR-301: Human anti-S. aureus mAb for therapeutic treatment of VAP. Aridis Pharmaceuticals https://www.aridispharma.com/ar-301/ (2023).
Aridis Pharmaceuticals announces first quarter 2023 financial results and business update. US Securities and Exchange Commission https://www.sec.gov/Archives/edgar/data/1614067/000149315223020618/ex99-1.htm (2023).
Francois, B. et al. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis. 21, 1313–1323 (2021).
Google Scholar
AR-320: long-acting human anti-S. aureus for prevention of VAP. Aridis Pharmaceuticals https://www.aridispharma.com/ar-320/ (2021).
Shinefield, H. et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med. 346, 491–496 (2002).
Google Scholar
Millar, E. V. et al. Safety, immunogenicity, and efficacy of NDV-3A against Staphylococcus aureus colonization: a phase 2 vaccine trial among US army infantry trainees. Vaccine 39, 3179–3188 (2021).
Google Scholar
Hassanzadeh, H. et al. Efficacy of a 4-antigen Staphylococcus aureus vaccine in spinal surgery: the Staphylococcus aureus suRgical inpatient vaccine efficacy (STRIVE) randomized clinical trial. Clin. Infect. Dis. 77, 312–320 (2023).
Google Scholar
Fowler, V. G. et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309, 1368–1378 (2013). This study uncovers the pitfalls in S. aureus vaccine design and surprisingly results in increased mortality in the vaccinated group relative to the unvaccinated participants.
Google Scholar
Karauzum, H. et al. Lethal CD4 T cell responses induced by vaccination against Staphylococcus aureus bacteremia. J. Infect. Dis. 215, 1231–1239 (2017).
Google Scholar
McNeely, T. B. et al. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum. Vaccin. Immunother. 10, 3513–3516 (2014).
Google Scholar
Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).
Google Scholar
Bernard, L. et al. Antibiotic treatment for 6 weeks versus 12 weeks in patients with pyogenic vertebral osteomyelitis: an open-label, non-inferiority, randomised, controlled trial. Lancet 385, 875–882 (2015).
Google Scholar
Bernard, L. et al. Antibiotic therapy for 6 or 12 weeks for prosthetic joint infection. N. Engl. J. Med. 384, 1991–2001 (2021).
Google Scholar
US National Library of Medicine. Clinicaltrials.gov https://www.clinicaltrials.gov/study/NCT00217841 (2006).
US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/study/NCT02357966?tab=results (2024).
AR-301: human anti-S. aureus mAb for therapeutic treatment of VAP. Aridis Pharmaceuticals https://www.aridispharma.com/ar-301/ (2022).
Benjamin, D. K. et al. A blinded, randomized, multicenter study of an intravenous Staphylococcus aureus immune globulin. J. Perinatol. 26, 290–295 (2006).
Google Scholar
DeJonge, M. et al. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J. Pediatr. 151, 260–265 (2007).
Google Scholar
Weisman, L. E. et al. A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics 128, 271–279 (2011).
Google Scholar
US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/study/NCT02940626?tab=results (2019).
Scott, W. K. et al. Human genetic variation in GLS2 is associated with development of complicated Staphylococcus aureus bacteremia. PLoS Genet. 14, e1007667 (2018).
Google Scholar
Rasmussen, G. et al. Expression of HLA-DRA and CD74 mRNA in whole blood during the course of complicated and uncomplicated Staphylococcus aureus bacteremia. Microbiol. Immunol. 61, 442–451 (2017).
Google Scholar
DeLorenze, G. N. et al. Polymorphisms in HLA class II genes are associated with susceptibility to Staphylococcus aureus infection in a white population. J. Infect. Dis. 213, 816–823 (2016).
Google Scholar
Cyr, D. D. et al. Evaluating genetic susceptibility to Staphylococcus aureus bacteremia in African Americans using admixture mapping. Genes Immun. 18, 95–99 (2017).
Google Scholar
Krogman, A. et al. HLA-DR polymorphisms influence in vivo responses to staphylococcal toxic shock syndrome toxin-1 in a transgenic mouse model. HLA 89, 20–28 (2017).
Google Scholar
Weiss, S. et al. Toxin exposure and HLA alleles determine serum antibody binding to toxic shock syndrome toxin 1 (TSST-1) of Staphylococcus aureus. Front. Immunol. 14, 1229562 (2023).
Google Scholar
Guimaraes, A. O. et al. A prognostic model of persistent bacteremia and mortality in complicated Staphylococcus aureus bloodstream infection. Clin. Infect. Dis. 68, 1502–1511 (2019).
Google Scholar
Volk, C. F. et al. Interleukin (IL)-1β and IL-10 host responses in patients with Staphylococcus aureus bacteremia determined by antimicrobial therapy. Clin. Infect. Dis. 70, 2634–2640 (2020).
Google Scholar
Rose, W. E. et al. Elevated serum interleukin-10 at time of hospital admission is predictive of mortality in patients with Staphylococcus aureus bacteremia. J. Infect. Dis. 206, 1604–1611 (2012).
Google Scholar