WHO. World malaria report 2023. Geneva: World Health Organization; 2023.
FMoH. Ethiopia malaria elimination strategic plan: 2021–2025. Addis Ababa: Federal Ministry of Health; 2020.
WHO. World malaria report 2021. Geneva: World Health Organization; 2021.
WHO. World malaria report 2020. Geneva: World Health Organization; 2020.
O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the burden of malaria in sub-Saharan Africa. Lancet Infect Dis. 2010;10:545–55.
Google Scholar
Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:322–31.
Google Scholar
WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
Battle KE, Lucas TC, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:332–43.
Google Scholar
Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Initial evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.
Google Scholar
Shargie EB, Ngondi J, Graves PM, Getachew A, Hwang J, Gebre T, et al. Rapid increase in ownership and use of long-lasting insecticidal nets and decrease in prevalence of malaria in three regional States of Ethiopia (2006–2007). J Trop Med. 2010;2010: e750978.
Taffese HS, Hemming-Schroeder E, Koepfli C, Tesfaye G, Lee M-c, Kazura J, et al. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect Dis Poverty. 2018;7: 103.
Google Scholar
WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.
Woyessa A, Hadis M, Kebede A. Human resource capacity to effectively implement malaria elimination: a policy brief for Ethiopia. Int J Technol Assess Health Care. 2013;29:212–7.
Google Scholar
FMoH. National malaria elimination road map. Addis Ababa: Ethiopia Federal Ministry of Health; 2017.
Mandefro A, Tadele G, Mekonen B, Golassa L. Analysing the six-year malaria trends at Metehara Health Centre in central Ethiopia: the impact of resurgence on the 2030 elimination goals. Malar J. 2024;23:32.
Google Scholar
Debash H, Nigatie M, Bisetegn H, Feleke DG, Tesfaw G, Amha A, et al. Malaria surveillance, outbreak investigation, response and its determinant factors in Waghemra Zone, Northeast Ethiopia: unmatched case-control study. Sci Rep. 2023;13:9938.
Google Scholar
Nakweya G. New malaria parasites increase health threat in Africa. Nat Afr. 2023. https://doi.org/10.1038/d44148-023-00370-2.
Zhou G, Taffese HS, Zhong D, Wang X, Lee MC, Degefa T, et al. Resurgence of clinical malaria in Ethiopia and its link to Anopheles stephensi invasion. Pathogens. 2024;13:748.
Google Scholar
Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.
Google Scholar
Tadesse FG, Ashine T, Teka H, Esayas E, Messenger LA, Chali W, et al. Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. Emerg Infect Dis. 2021;27:603–7.
Google Scholar
Emiru T, Getachew D, Murphy M, Sedda L, Ejigu LA, Bulto MG, et al. Evidence for a role of Anopheles stephensi in the spread of drug-and diagnosis-resistant malaria in Africa. Nat Med. 2023;29:3203–11.
Google Scholar
File T, Dinka H. A preliminary study on urban malaria during the minor transmission season: the case of Adama City, Oromia, Ethiopia. Parasite Epidemiol Contr. 2020;11: e00175.
Hassen J, Dinka H. Magnitude of urban malaria and its associated risk factors: the case of Batu town, Oromia Regional State, Ethiopia. J Int Med Res. 2022;50: 03000605221080686.
Google Scholar
Du Toit A. Urban malaria. Nat Rev Microbiol. 2024;22:1.
Google Scholar
Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Bortel W, Denis L. Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE. 2011;6: e16066.
Google Scholar
Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J. 2020;19:180.
Google Scholar
Degefa T, Githeko AK, Lee M-C, Yan G, Yewhalaw D. Patterns of human exposure to early evening and outdoor biting mosquitoes and residual malaria transmission in Ethiopia. Acta Trop. 2021;216: 105837.
Google Scholar
Kibret S, Lautze J, McCartney M, Nhamo L, Yan G. Malaria around large dams in Africa: effect of environmental and transmission endemicity factors. Malar J. 2019;18:303.
Google Scholar
Yan G, Lee M-C, Zhou G, Jiang A-L, Degefa T, Zhong D, et al. Impact of environmental modifications on the ecology, epidemiology, and pathogenesis of Plasmodium falciparum and Plasmodium vivax malaria in East Africa. Am J Trop Med Hyg. 2022;107(4 Suppl):5.
Google Scholar
Woyessa A, Siebert A, Owusu A, Cousin R, Dinku T, Thomson MC. El Niño and other climatic drivers of epidemic malaria in Ethiopia: new tools for national health adaptation plans. Malar J. 2023;22:195.
Google Scholar
Weiss DJ, Bertozzi-Villa A, Rumisha SF, Amratia P, Arambepola R, Battle KE, et al. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis. Lancet Infect Dis. 2021;21:59–69.
Google Scholar
Robert V, Macintyre K, Keating J, Trape J-F, Duchemin J-B, Warren M, et al. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg. 2003;68:169–76.
Google Scholar
Doumbe-Belisse P, Kopya E, Ngadjeu CS, Sonhafouo-Chiana N, Talipouo A, Djamouko-Djonkam L, et al. Urban malaria in sub-Saharan Africa: dynamic of the vectorial system and the entomological inoculation rate. Malar J. 2021;20:364.
Google Scholar
Yared S, Gebresilassie A, Aklilu E, Abdulahi E, Kirstein OD, Gonzalez-Olvera G, et al. Building the vector in: construction practices and the invasion and persistence of Anopheles stephensi in Jigjiga Ethiopia. Lancet Planet Health. 2023;7:e999–1005.
Google Scholar
Degefa T, Zeynudin A, Godesso A, Michael YH, Eba K, Zemene E, et al. Malaria incidence and assessment of entomological indices among resettled communities in Ethiopia: a longitudinal study. Malar J. 2015;14:24.
Google Scholar
Peterson I, Borrell LN, El-Sadr W, Teklehaimanot A. Individual and household level factors associated with malaria incidence in a highland region of Ethiopia: a multilevel analysis. Am J Trop Med Hyg. 2009;80:103–11.
Google Scholar
Balkew M, Mumba P, Dengela D, Yohannes G, Getachew D, Yared S, et al. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors. 2020;13:35.
Google Scholar
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar J. 2021;20:263.
Google Scholar
Sinka M, Pironon S, Massey N, Longbottom J, Hemingway J, Moyes C, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci USA. 2020;117:24900–8.
Google Scholar
Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.
Google Scholar
Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 2014;139:39–43.
Google Scholar
de Santi VP, Khaireh BA, Chiniard T, Pradines B, Taudon N, Larréché S, et al. Role of Anopheles stephensi mosquitoes in Malaria Outbreak, Djibouti, 2019. Emerg Infect Dis. 2021;27:1697.
Google Scholar
Seyfarth M, Khaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established—malaria emerging. Parasitol Res. 2019;118:725–32.
Google Scholar
Hawaria D, Kibret S, Zhong D, Lee M-C, Lelisa K, Bekele B, et al. First report of Anopheles stephensi from southern Ethiopia. Malar J. 2023;22:373.
Google Scholar
Ashine T, Eyasu A, Asmamaw Y, Simma E, Zemene E, Epstein A, et al. Spatiotemporal distribution and bionomics of Anopheles stephensi in different eco-epidemiological settings in Ethiopia. Parasit Vectors. 2024;17:166.
Google Scholar
Amenu TA, Teka H, Esayas E, Messenger LA, Chali W, Meerstein-Kessel L, et al. Anopheles stephensi as an emerging malaria vector in the Horn of Africa with high susceptibility to Ethiopian Plasmodium vivax and Plasmodium falciparum isolates. bioRxiv. 2020. https://doi.org/10.1101/2020.02.22.961284.
Teshome A, Erko B, Golassa L, Yohannes G, Irish SR, Zohdy S, et al. Resistance of Anopheles stephensi to selected insecticides used for indoor residual spraying and long-lasting insecticidal nets in Ethiopia. Malar J. 2023;22:218.
Google Scholar
WHO. Manual on practical entomology in malaria. Part II: methods and techniques. Geneva: World Health Organization; 1975.
Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). Johannesburg: South African Institute for Medical Research; 1968.
Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70.
Google Scholar
Gillies M, Coetzee M. A Supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Instit Med Res. 1987;55:1–143.
Djadid ND, Gholizadeh S, Aghajari M, Zehi AH, Raeisi A, Zakeri S. Genetic analysis of rDNA-ITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran. Acta Trop. 2006;97:65–74.
Google Scholar
Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.
Google Scholar
Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, et al. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol. 1988;25:9–16.
Google Scholar
Beier JC, Perkins PV, Wirtz RA, Whitmire RE, Mugambi M. Field evaluation of an enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am J Trop Med Hyg. 1987. https://doi.org/10.4269/ajtmh.1987.36.459.
Google Scholar
Wirtz R, Burkot T, Graves P, Andre R. Field evaluation of enzyme-linked immunosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol. 1987;24(4):433–7.
Google Scholar
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2016.
Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar J. 2011;10:59.
Google Scholar
Dabiré K, Diabaté A, Namontougou M, Djogbenou L, Kengne P, Simard F, et al. Distribution of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae s.l populations from Burkina Faso (West Africa). Trop Med Int Health. 2009;14:396–403.
Google Scholar
Garrett-Jones C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ. 1964;30:241–61.
Google Scholar
WHO. Vector alert: Anopheles stephensi invasion and spread: Horn of Africa, the Republic of the Sudan and surrounding geographical areas, and Sri Lanka: information note. Geneva: World Health Organization; 2019.
Govella NJ, Chaki PP, Mpangile JM, Killeen GF. Monitoring mosquitoes in urban Dar es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors. 2011;4:40.
Google Scholar
Dinede G, Bihon W, Gazu L, Foukmeniok Mbokou S, Girma S, Srinivasan R, et al. Assessment of pesticide residues in vegetables produced in central and eastern Ethiopia. Front Sustain Food Syst. 2023;7:1143753.
Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding sites of Aedes aegypti: potential dengue vectors in Dire Dawa, East Ethiopia. Interdiscip Perspect Infect Dis. 2015;2015: 706276.
Google Scholar
Yehwalaw D, Erena E, Degefa T, Zemene E, Simma EA, Kifle YG. Biological and residual activity of candidate larvicide formulation, SumiLarv TM 2MR, against an exotic invasive mosquito Anopheles stephensi Liston in Ethiopia. Sci Rep. 2025;15:291.
Raghavendra K, Barik TK, Sharma P, Bhatt RM, Srivastava HC, Sreehari U, et al. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malar J. 2011;10:16.
Google Scholar
Yewhalaw D, Simma EA, Zemene E, Zeleke K, Degefa T. Residual efficacy of SumiShield™ 50WG for indoor residual spraying in Ethiopia. Malar J. 2022;21:364.
Google Scholar
Zhong D, Degefa T, Zhou G, Lee M-C, Wang C, Chen J, et al. Esterase-mediated pyrethroid resistance in populations of an invasive malaria vector Anopheles stephensi from Ethiopia. Genes. 2024;15:1603.
Google Scholar