Porphyrinic MOF-derived novel nanocomposite for gastric anticancer and Helicobacter pylori photoantibacterial effect assay

  • Gavas, S., Quazi, S. & Karpiński, T. M. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett. 16 (1), 173 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, Y., Sun, M., Huang, H. & Jin, W. L. Drug repurposing for cancer therapy. Signal. Transduct. Target. Therapy. 9 (1), 92. https://doi.org/10.1038/s41392-024-01808-1 (2024).

    Article 

    Google Scholar 

  • Overchuk, M., Weersink, R. A., Wilson, B. C. & Zheng, G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano. 17 (9), 7979–8003 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, H. et al. Rational design of Guanidinium-Based Bio-MCOF as a multifunctional nanocatalyst in tumor cells for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces. 15 (50), 58593–58604. https://doi.org/10.1021/acsami.3c13555 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Pereira, C. F. et al. A. A. Bifunctional porphyrin-based nano-metal–organic frameworks: catalytic and chemosensing studies. Inorg. Chem. 57 (7), 3855–3864 (2018).

    PubMed 

    Google Scholar 

  • Murugan, C., Venkatesan, S. & Kannan, S. Cancer therapeutic proficiency of dual-targeted mesoporous silica nanocomposite endorses combination drug delivery. ACS Omega. 2 (11), 7959–7975 (2017).

    PubMed 

    Google Scholar 

  • Icten, O., Erdem Tuncdemir, B. & Mergen, H. Design and development of gold-loaded and boron-attached multicore manganese ferrite nanoparticles as a potential agent in biomedical applications. ACS Omega. 7 (23), 20195–20203 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, T. et al. A nanocomposite hydrogel with potent and Broad-Spectrum antibacterial activity. ACS Appl. Mater. Interfaces. 10 (17), 15163–15173. https://doi.org/10.1021/acsami.8b02527 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wu, T., Li, X., Xue, J. & Xia, Y. Rational fabrication of Functionally-Graded surfaces for biological and biomedical applications. Acc. Mater. Res. 5 (12), 1507–1519 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J., Jiang, Q., Feng, D., Mao, L. & Zhou, H. C. Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 138 (10), 3518–3525 (2016).

    PubMed 

    Google Scholar 

  • Iman, K. et al. Novel {cu 4} and {cu 4 cd 6} clusters derived from flexible aminoalcohols: synthesis, characterization, crystal structures, and evaluation of anticancer properties. Dalton Trans. 50 (34), 11941–11953 (2021).

    PubMed 

    Google Scholar 

  • Zia, H., Shamim, M. A., Zeeshan, M., Khan, M. Y. & Shahid, M. Metal organic frameworks as a versatile platform for the radioactive iodine capture: state of the Art developments and future prospects. Inorg. Chim. Acta. 539, 121026 (2022).

    Google Scholar 

  • Khan, M. Y. et al. Facile synthesis of a three-dimensional Ln-MOF@ FCNT composite for the fabrication of a symmetric supercapacitor device with ultra-high energy density: overcoming the energy storage barrier. Dalton Trans. 53 (17), 7477–7497 (2024).

    PubMed 

    Google Scholar 

  • Zeeshan, M. & Shahid, M. State of the Art developments and prospects of metal–organic frameworks for energy applications. Dalton Trans. 51 (5), 1675–1723 (2022).

    PubMed 

    Google Scholar 

  • Zeeshan, M., Khan, M. Y., Khan, R., Mehtab, M. & Shahid, M. Turning CO 2 into treasure: the promise of metal–organic frameworks. CrystEngComm 26 (39), 5489–5517 (2024).

    Google Scholar 

  • Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341 (6149), 1230444 (2013).

    PubMed 

    Google Scholar 

  • Luo, H. B. et al. Rapid, biomimetic degradation of a nerve agent simulant by incorporating imidazole bases into a metal–organic framework. ACS Catal. 11 (3), 1424–1429 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabiee, N. et al. Natural polymers decorated MOF-MXene nanocarriers for co-delivery of doxorubicin/pcrispr. ACS Appl. Bio Mater. 4 (6), 5106–5121 (2021).

    PubMed 

    Google Scholar 

  • Cheng, E. et al. Analysis of survival among adults with early-onset colorectal cancer in the National cancer database. JAMA Netw. Open. 4 (6), e2112539–e2112539 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arambula, J. F. & Sessler, J. L. Porphyrinoid Drug Conjugates Chem 6 (7), 1634–1651. (2020).

    PubMed 

    Google Scholar 

  • Asano, N., Uemura, S., Kinugawa, T., Akasaka, H. & Mizutani, T. Synthesis of Biladienone and bilatrienone by coupled oxidation of tetraarylporphyrins. J. Org. Chem. 72 (14), 5320–5326 (2007).

    PubMed 

    Google Scholar 

  • Gao, W. Y., Chrzanowski, M. & Ma, S. Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev. 43 (16), 5841–5866 (2014).

    PubMed 

    Google Scholar 

  • Wang, Z. et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev. 439, 213945 (2021).

    Google Scholar 

  • Oliveira, M. S. et al. Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J. Cancer Sci. Ther. 5 (2), 52–57. https://doi.org/10.4172/1948-5956.1000184 (2013). From NLM.

    Article 
    PubMed 

    Google Scholar 

  • Abdullah, C. S. et al. Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports 9 (1), 2002. (2019). https://doi.org/10.1038/s41598-018-37862-3

  • Lee, H. et al. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J. Controlled Release. 283, 190–199 (2018).

    Google Scholar 

  • Wu, H. et al. Synthesis of a Clay-Based nanoagent for photonanomedicine. ACS Appl. Mater. Interfaces. 12 (1), 390–399. https://doi.org/10.1021/acsami.9b19930 (2020). From NLM.

    Article 
    PubMed 

    Google Scholar 

  • Zou, Y. et al. Single-Molecule Förster resonance energy Transfer-Based photosensitizer for synergistic photodynamic/photothermal therapy. ACS Cent. Sci. 7 (2), 327–334. https://doi.org/10.1021/acscentsci.0c01551 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, C. Y. et al. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics 8 (11), 2939 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabiee, N. et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to alzheimer’s disease. Adv. Ther. 4 (3), 2000076 (2021).

    Google Scholar 

  • Nejad, S. T., Rahimi, R., Rabbani, M. & Rostamnia, S. Facile photosynthesis of novel porphyrin-derived nanocomposites containing ag, ag/au, and ag/cu for photobactericidal study. Sci. Rep. 13 (1), 8580. https://doi.org/10.1038/s41598-023-34745-0 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tehrani Nejad, S., Rahimi, R., Najafi, M. & Rostamnia, S. Sustainable gold nanoparticle (Au-NP) growth within interspaces of porphyrinic Zirconium-Based Metal–Organic frameworks: green synthesis of PCN-224/Au-NPs and its anticancer effect on colorectal cancer cells assay. ACS Appl. Mater. Interfaces. 16 (3), 3162–3170. https://doi.org/10.1021/acsami.3c15398 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Han, H. H. et al. Bimetallic Hyaluronate-Modified au@pt nanoparticles for noninvasive photoacoustic imaging and photothermal therapy of skin cancer. ACS Appl. Mater. Interfaces. 15 (9), 11609–11620. https://doi.org/10.1021/acsami.3c01858 (2023). From NLM.

    Article 
    PubMed 

    Google Scholar 

  • Cole, A. J., Yang, V. C. & David, A. E. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29 (7), 323–332. https://doi.org/10.1016/j.tibtech.2011.03.001 (2011). From NLM.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kesharwani, P. et al. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer. 22 (1), 98. https://doi.org/10.1186/s12943-023-01798-8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nejabat, M. et al. An overview on gold nanorods as versatile nanoparticles in cancer therapy. J. Controlled Release. 354, 221–242 (2023).

    Google Scholar 

  • Burz, C., Pop, V., Silaghi, C., Lupan, I. & Samasca, G. Prognosis and treatment of gastric cancer: A 2024 update. Cancers (Basel). 16 (9). https://doi.org/10.3390/cancers16091708 (2024). From NLM.

  • Guan, W. L., He, Y. & Xu, R. H. Gastric cancer treatment: recent progress and future perspectives. J. Hematol. Oncol. 16 (1), 57. https://doi.org/10.1186/s13045-023-01451-3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H., Shen, M. & Wang, S. Current therapies and progress in the treatment of advanced gastric cancer. Front. Oncol. 14, 1327055. https://doi.org/10.3389/fonc.2024.1327055 (2024). From NLM.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnold, M. et al. Global burden of 5 major types of Gastrointestinal cancer. Gastroenterology 159 (1), 335–349 (2020). e315.

    PubMed 

    Google Scholar 

  • Chunarkar-Patil, P. et al. Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines 12 (1). https://doi.org/10.3390/biomedicines12010201 (2024). From NLM.

  • Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal. Transduct. Target. Therapy. 6 (1), 201. https://doi.org/10.1038/s41392-021-00572-w (2021).

    Article 

    Google Scholar 

  • Cui, W. et al. Discovering anti-cancer drugs via computational methods. Front. Pharmacol. 11, 733 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, M. et al. Advances and challenges of metal-organic frameworks in the diagnosis and treatment of gastric cancer. Mater. Today Chem. 43, 102517 (2025).

    Google Scholar 

  • Yu, Z. et al. Biomimetic Metal-Organic Framework Nanoparticles for Synergistic Combining of SDT-Chemotherapy Induce Pyroptosis in Gastric Cancer, Front. Bioeng. Biotechnol., 10, 796820. 2022. (2022).

  • Zhao, D. et al. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J. Nanobiotechnol. 20 (1), 421 (2022).

    Google Scholar 

  • Demir Duman, F. et al. MOF-808 nanoparticles as a Cancer-Targeted dual drug delivery system for carboplatin and Floxuridine. ACS Appl. Nano Mater. 5 (10), 13862–13873. https://doi.org/10.1021/acsanm.2c01632 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, J. et al. CPP10-targeted photoactivatable MOF nanosystem for combined photodynamic Therapy – Chemotherapy of cancer. J. Science: Adv. Mater. Devices. 9 (3), 100761. https://doi.org/10.1016/j.jsamd.2024.100761 (2024).

    Article 

    Google Scholar 

  • Nazri, S. et al. Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. Sep. Purif. Technol. 259, 118197 (2021).

    Google Scholar 

  • Tehrani Nejad, S., Rahimi, R., Najafi, M. & Rostamnia, S. J. A. A. M. Interfaces. Sustainable gold nanoparticle (Au-NP) growth within interspaces of porphyrinic Zirconium-Based Metal–Organic frameworks: green synthesis of PCN-224/Au-NPs and its anticancer effect on colorectal cancer cells assay. (2024).

  • Gholami, N. et al. Cytotoxic and apoptotic properties of a novel nano-toxin formulation based on biologically synthesized silver nanoparticle loaded with Recombinant truncated Pseudomonas exotoxin A. J. Cell. Physiol. 235 (4), 3711–3720 (2020).

    PubMed 

    Google Scholar 

  • Zong, Y. et al. Synthesis of porphyrin Zr-MOFs for the adsorption and photodegradation of antibiotics under visible light. ACS Omega. 6 (27), 17228–17238 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moradi, E., Rahimi, R., Farahani, Y. D. & Safarifard, V. Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as a luminescent sensor for highly selective sensing of Cd2 + and Br – ions and THF small molecule. J. Solid State Chem. 282, 121103 (2020).

    Google Scholar 

  • Xu, W., Dong, M., Di, L. & Zhang, X. A facile method for Preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials 9 (10), 1432 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonnett, B. L. et al. PCN-222 metal–organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes. ACS Appl. Mater. Interfaces. 12 (13), 15765–15773 (2020).

    PubMed 

    Google Scholar 

  • Karamzadeh, S., Sanchooli, E., Oveisi, A. R., Daliran, S. & Luque, R. Visible-LED-light-driven photocatalytic synthesis of N-heterocycles mediated by a polyoxometalate-containing mesoporous zirconium metal-organic framework. Appl. Catal. B. 303, 120815 (2022).

    Google Scholar 

  • Carrasco, S., Sanz-Marco, A. & Martín-Matute, B. J. O. Fast and robust synthesis of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2. Organometallics 38 (18), 3429–3435 (2019).

  • Zuliani, A., Castillejos, M. C. & Khiar, N. J. G. C. Continuous flow synthesis of PCN-222 (MOF-545) with controlled size and morphology: a sustainable approach for efficient production. Green Chem. 25 (24), 10596–10610 (2023).

  • Safaei Moghaddam, Z., Kaykhaii, M., Khajeh, M. & Oveisi, A. R. J. B. C. PCN-222 metal–organic framework: a selective and highly efficient sorbent for the extraction of aspartame from gum, juice, and diet soft drink before its spectrophotometric determination. BMC Chem. 14 (1), 19 (2020).

  • Nazri, S. et al. Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. 259, 118197. (2021).

  • Afrin, S., Yang, X., Morris, A. J. & Grumstrup, E. M. J. J. o. t. A. C. S. Rapid Exciton Transport and Structural Defects in Individual Porphyrinic Metal Organic Framework Microcrystals. (2024).

  • Musib, D. et al. Red light-activable biotinylated copper (II) complex-functionalized gold nanocomposite (Biotin-Cu@ AuNP) towards targeted photodynamic therapy. J. Inorg. Biochem. 243, 112183 (2023).

    PubMed 

    Google Scholar 

  • Chakraborty, D. et al. Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity. Mater. Today Chem. 24, 100882 (2022).

    Google Scholar 

  • Kim, J. Y. & Park, J. H. ROS-dependent caspase-9 activation in hypoxic cell death. FEBS Lett. 549 (1–3), 94–98 (2003).

    PubMed 

    Google Scholar 

  • Matés, J. M. & Sánchez-Jiménez, F. M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32 (2), 157–170 (2000).

    PubMed 

    Google Scholar 

  • Continue Reading