Impact of Micro-RNAs as biomarkers for end-stage renal disease related to hypertension and diabetes

  • Franczyk, B. et al. MiRNA biomarkers in renal disease. Int. Urol. Nephrol. 54, 575–588 (2022).

    PubMed 

    Google Scholar 

  • Bikbov, B. et al. Global, regional, and National burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395, 709–733 (2020).

    Google Scholar 

  • Bağriaçik, E. & Dikmen, B. T. Self-management training in patients with chronic kidney disease undergoing hemodialysis: A systematic review. Semin Dial. 37, 91–100 (2024).

    PubMed 

    Google Scholar 

  • Hazzan, A. D., Halinski, C., Agoritsas, S., Fishbane, S. & DeVita, M. V. Epidemiology and challenges to the management of advanced CKD. Adv. Chronic Kidney Dis. 23, 217–221 (2016).

    PubMed 

    Google Scholar 

  • Mullins, L. J., Conway, B. R., Menzies, R. I., Denby, L. & Mullins, J. J. Renal disease pathophysiology and treatment: contributions from the rat. Dis. Model. Mech. 9, 1419–1433 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thurlow, J. S. et al. Global epidemiology of End-Stage kidney disease and disparities in kidney replacement therapy. Am. J. Nephrol. 52, 98–107 (2021).

    PubMed 

    Google Scholar 

  • Connor, K. L. & Denby, L. MicroRNAs as non-invasive biomarkers of renal disease. Nephrol. Dial Transpl. 36, 428–429 (2021).

    Google Scholar 

  • Schwarzenbach, H. Clinical relevance of circulating, Cell-Free and Exosomal MicroRNAs in plasma and serum of breast cancer patients. Oncol. Res. Treat. 40, 423–429 (2017).

    PubMed 

    Google Scholar 

  • Nabawy, M. et al. Impact of some MiRNAs expression on induction of obesity related diseases. Egypt. J. Chem. 0–0. https://doi.org/10.21608/ejchem.2024.307399.10085 (2024).

  • Gouda, W. et al. Evaluation of the association of some circulating miRNA molecules in the metabolic syndrome. Qatar Med. J. (2024). (2024).

  • Nabawy, M. et al. Evaluation of some MicroRNAs dysregulation in obesity and obesity-related hypertension. Egypt. Pharm. J. 24, 199–206 (2025).

    Google Scholar 

  • Sun, Q. et al. The feedback loop between miR-21, PDCD4 and AP-1 functions as a driving force for renal fibrogenesis. J Cell. Sci 131, (2018).

  • Fujii, R. et al. Circulating MicroRNAs (miR-126, miR-197, and miR-223) are associated with chronic kidney disease among elderly survivors of the great East Japan earthquake. BMC Nephrol. 20, 1–7 (2019).

    Google Scholar 

  • Abdelsalam, L. et al. Expression of miRNAs-122, -192 and – 499 in end stage renal disease associated with acute myocardial infarction. Arch. Med. Sci. 15, 1247–1253 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, N. X. et al. Decreased MicroRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One. 8, e64558 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taïbi, F. et al. Possible involvement of MicroRNAs in vascular damage in experimental chronic kidney disease. Biochim. Biophys. Acta. 1842, 88–98 (2014).

    PubMed 

    Google Scholar 

  • Rangrez, A. Y. et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 7, e47807 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Motshwari, D. et al. MicroRNAs associated with chronic kidney disease in the general population and High-Risk Subgroups—A systematic review. Int. J. Mol. Sci. 24, 1792 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 105, S117–S314 (2024).

    Google Scholar 

  • Kreutz, R. et al. European Society of Hypertension clinical practice guidelines for the management of arterial hypertension. Eur. J. Intern. Med. 126, 1–15 (2024). (2024).

  • American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of care in Diabetes-2024. Diabetes Care. 47, S20–S42 (2024).

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods 25, 402–408 (2001).

    PubMed 

    Google Scholar 

  • Yan, L. et al. MiR-21-5p links Epithelial-Mesenchymal transition phenotype with Stem-Like cell signatures via AKT signaling in keloid keratinocytes. Sci. Rep. 6, 28281 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kowara, M. et al. MicroRNA inhibiting atheroprotective proteins in patients with unstable angina comparing to chronic coronary syndrome. Int J. Mol. Sci 25, (2024).

  • Liu, F. et al. miR-192 prevents renal tubulointerstitial fibrosis in diabetic nephropathy by targeting Egr1. Eur. Rev. Med. Pharmacol. Sci. 22, 4252–4260 (2018).

    PubMed 

    Google Scholar 

  • Xu, X. et al. MiR-18a and miR-17 are positively correlated with Circulating PD-1 + ICOS + follicular helper T cells after hepatitis B vaccination in a Chinese population. BMC Immunol. 19, 25 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra, P. et al. Descriptive statistics and normality tests for statistical data. Ann. Card Anaesth. 22, 67–72 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • YOUDEN, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).

    PubMed 

    Google Scholar 

  • Wang, H. et al. A review of long non-coding RNAs in ankylosing spondylitis: pathogenesis, clinical assessment, and therapeutic targets. Front Cell. Dev. Biol 12, (2024).

  • Al-Dmour, B. A., Al-Nawayseh, A. H. T., Al-Tarawneh, M. A. & Hani, Z. M. B. Antecedents of mental disorder among physically inactive employees study of Jordanian higher education institutions: mediated moderation of perceived threat of Covid-19 and psychological capital. Pakistan J. Life Soc. Sci 21, (2023).

  • Khan, A., Zahra, A., Mumtaz, S., Fatmi, M. Q. & Khan, M. J. Integrated In-silico analysis to study the role of MicroRNAs in the detection of chronic kidney diseases. Curr. Bioinform. 15, 144–154 (2020).

    Google Scholar 

  • Ibrahim, R. A. & Saadoon, I. H. The role of miRNA- 126 in the development of end stage renal disease. Pakistan J. Life Soc. Sci. 22, 5905–5913 (2024).

    Google Scholar 

  • Fourdinier, O. et al. Syndecan-1 and free indoxyl sulfate levels are associated with miR-126 in chronic kidney disease. Int. J. Mol. Sci. 22, 10549 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Scullion, K. M. et al. Circulating argonaute-bound microRNA-126 reports vascular dysfunction and treatment response in acute and chronic kidney disease. iScience 24, 101937 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Fujii, R. et al. Association between Circulating MicroRNAs and changes in kidney function: A five-year prospective study among Japanese adults without CKD. Clin. Chim. Acta. 521, 97–103 (2021).

    PubMed 

    Google Scholar 

  • Carmona, A. et al. Inflammation, senescence and MicroRNAs in chronic kidney disease. Front Cell. Dev. Biol 8, (2020).

  • Nguyen, D. N. D., Chilian, W. M., Zain, S. M., Daud, M. F. & Pung, Y. F. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Can. J. Physiol. Pharmacol. 99, 827–838 (2021).

    PubMed 

    Google Scholar 

  • Nammian, P., Razban, V., Tabei, S. M. B. & Asadi-Yousefabad, S. L. MicroRNA-126: dual role in angiogenesis dependent diseases. Curr. Pharm. Des. 26, 4883–4893 (2020).

    PubMed 

    Google Scholar 

  • Donderski, R. et al. Analysis of profibrogenic MicroRNAs (miRNAs) expression in urine and serum of chronic kidney disease (CKD) stage 1–4 patients and their relationship with proteinuria and kidney function. Int. Urol. Nephrol. 54, 937–947 (2022).

    PubMed 

    Google Scholar 

  • Lange, T. et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury. J. Cell. Mol. Med. 23, 4839–4843 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zang, J., Maxwell, A. P., Simpson, D. A. & McKay, G. J. Differential expression of urinary Exosomal MicroRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci. Rep. 9, 10900 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khokhar, M. et al. Metformin mediates MicroRNA-21 regulated Circulating matrix metalloproteinase-9 in diabetic nephropathy: an in-silico and clinical study. Arch. Physiol. Biochem. 129, 1200–1210 (2023).

    PubMed 

    Google Scholar 

  • Fouad, M., Salem, I., Elhefnawy, K., Raafat, N. & Faisal, A. MicroRNA-21 as an early marker of nephropathy in patients with type 1 diabetes. Indian J. Nephrol. 30, 21–25 (2020).

    PubMed 

    Google Scholar 

  • Sayilar, E. I. Biomarker potential of urine miR-451 at different stages of diabetic nephropathy. J Diabetes Metab 07, (2016).

  • Gomez, I. G. et al. Anti–microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 125, 141–156 (2015).

    PubMed 

    Google Scholar 

  • Metzinger-Le Meuth, V., Burtey, S., Maitrias, P., Massy, Z. A. & Metzinger, L. MicroRNAs in the pathophysiology of CKD-MBD: biomarkers and innovative drugs. Biochim. Biophys. Acta – Mol. Basis Dis. 1863, 337–345 (2017).

    PubMed 

    Google Scholar 

  • Zhong, X. et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663–674 (2013).

    PubMed 

    Google Scholar 

  • Gomez, I. G., Nakagawa, N. & Duffield, J. S. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am. J. Physiol. Ren. Physiol. 310, F931–F944 (2016).

    Google Scholar 

  • Zhou, Y. & Yang, J. Implications of MicroRNA in kidney metabolic disorders. ExRNA 2, 4 (2020).

    Google Scholar 

  • Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by Silencing metabolic pathways. Sci Transl Med 4, (2012).

  • He, F. et al. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57, 1726–1736 (2014).

    PubMed 

    Google Scholar 

  • Petrica, L. et al. Interleukins and MiRNAs intervene in the early stages of diabetic kidney disease in type 2 diabetes mellitus patients. Biomark. Med. 13, 1577–1588 (2019).

    PubMed 

    Google Scholar 

  • Jia, Y. et al. miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy. J. Diabetes Res. 7932765 (2016). (2016).

  • Jenkins, R. H., Martin, J., Phillips, A. O., Bowen, T. & Fraser, D. J. Pleiotropy of microRNA-192 in the kidney. Biochem. Soc. Trans. 40, 762–767 (2012).

    PubMed 

    Google Scholar 

  • Ma, X., Lu, C., Lv, C., Wu, C. & Wang, Q. The Expression of miR-192 and Its Significance in Diabetic Nephropathy Patients with Different Urine Albumin Creatinine Ratio. J. Diabetes Res. 6789402 (2016). (2016).

  • Milas, O. et al. Deregulated profiles of urinary MicroRNAs May explain podocyte injury and proximal tubule dysfunction in normoalbuminuric patients with type 2 diabetes mellitus. J. Investig Med. 66, 747–754 (2018).

    PubMed 

    Google Scholar 

  • Al-Kafaji, G. & Al-Muhtaresh, H. A. Expression of microRNA–377 and microRNA–192 and their potential as blood–based biomarkers for early detection of type 2 diabetic nephropathy. Mol. Med. Rep. 18, 1171–1180 (2018).

    PubMed 

    Google Scholar 

  • Chaiwangyen, W., Khantamat, O., Kangwan, N., Tipsuwan, W. & de Sousa, F. L. P. MicroRNA expression in response to environmental hazards: implications for health. Ecotoxicol. Environ. Saf. 300, 118420 (2025).

    PubMed 

    Google Scholar 

  • Kamkar, L., Saberi, S., Totonchi, M. & Kavousi, K. Circulating MicroRNA panels for multi-cancer detection and gastric cancer screening: leveraging a network biology approach. BMC Med. Genomics. 18, 27 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Testing the accuracy of a three-miRNA panel for the detection of primary prostate cancer: a discovery and validation study. Future Oncol. 21, 2167–2176 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Garmaa, G. et al. Panel MiRNAs are potential diagnostic markers for chronic kidney diseases: a systematic review and meta-analysis. BMC Nephrol. 25, 261 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matshazi, D. M. et al. Circulating levels of MicroRNAs associated with hypertension: A Cross-Sectional study in male and female South African participants. Front Genet 12, (2021).

  • Kondracki, B. et al. MicroRNA expression in patients with coronary artery disease and Hypertension—A systematic review. Int. J. Mol. Sci. 25, 6430 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fichtlscherer, S. et al. Circulating MicroRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684 (2010).

    PubMed 

    Google Scholar 

  • Tijsen, A. J., Pinto, Y. M. & Creemers, E. E. Circulating MicroRNAs as diagnostic biomarkers for cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 303, H1085–H1095 (2012).

    PubMed 

    Google Scholar 

  • Guo, B. et al. MicroRNA-126: from biology to therapeutics. Biomed. Pharmacother. 185, 117953 (2025).

    PubMed 

    Google Scholar 

  • Le, M. N. & Nguyen, T. A. Innovative MicroRNA quantification by qPCR. Mol. Ther. Nucleic Acids. 31, 628–630 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. Y. et al. Advances in Point-of-Care Testing of microRNAs Based on Portable Instruments and Visual Detection. Biosensors 13, (2023).

  • Continue Reading