Twenty years of tuberculosis-driven selection shaped the evolution of the meerkat major histocompatibility complex

  • Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kloch, A. et al. Signatures of balancing selection in toll-like receptor (TLRs) genes—novel insights from a free-living rodent. Sci. Rep. 8, 8361 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Quéméré, E. et al. Pathogen‐mediated selection favours the maintenance of innate immunity gene polymorphism in a widespread wild ungulate. J. Evol. Biol. 34, 1156–1166 (2021).

    PubMed 

    Google Scholar 

  • Wegner, K. M., Kalbe, M., Kurtz, J., Reusch, T. B. H. & Milinski, M. Parasite selection for immunogenetic optimality. Science 301, 1343 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Wroblewski, E. E. et al. Malaria-driven adaptation of MHC class I in wild bonobo populations. Nat. Commun. 14, 1033 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radwan, J., Babik, W., Kaufman, J., Lenz, T. L. & Winternitz, J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36, 298–311 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaufman, J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu. Rev. Immunol. 36, 383–409 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. R. Soc. B 277, 979–988 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahata, N. & Nei, M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124, 967–978 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host–pathogen coevolution. Immunogenetics 55, 732–739 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 3, 621 (2012).

    PubMed 

    Google Scholar 

  • Kubinak, J. L., Ruff, J. S., Hyzer, C. W., Slev, P. R. & Potts, W. K. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proc. Natl Acad. Sci. USA 109, 3422–3427 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proc. Natl Acad. Sci. USA 115, 1552–1557 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Schmid, D. W. et al. MHC class II genes mediate susceptibility and resistance to coronavirus infections in bats. Mol. Ecol. 32, 3989–4002 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Bonneaud, C., Perez-Tris, J., Federici, P., Chastel, O. & Sorci, G. Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60, 383–389 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Brisson, D. Negative frequency-dependent selection is frequently confounding. Front. Ecol. Evol. 6, 10 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernatchez, L. & Landry, C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16, 363–377 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Oliver, M. K., Lambin, X., Cornulier, T. & Piertney, S. B. Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol. Ecol. 18, 80–92 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Acevedo-Whitehouse, K., Gulland, F. M. & Bowen, L. MHC class II DRB diversity predicts antigen recognition and is associated with disease severity in California sea lions naturally infected with Leptospira interrogans. Infect. Genet. Evol. 57, 158–165 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lenz, T. L., Wells, K., Pfeiffer, M. & Sommer, S. Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys sabanus). BMC Evol. Biol. 9, 269 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliver, M. K., Telfer, S. & Piertney, S. B. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc. R. Soc. B 276, 1119–1128 (2008).

    PubMed Central 

    Google Scholar 

  • Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol. Lett. 15, 723–731 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Landry, C. & Bernatchez, L. Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol. Ecol. 10, 2525–2539 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Ejsmond, M. J. & Radwan, J. Red Queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput. Biol. 11, e1004627 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ejsmond, M. J., Babik, W. & Radwan, J. MHC allele frequency distributions under parasite-driven selection: a simulation model. BMC Evol. Biol. 10, 332 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Westerdahl, H., Hansson, B., Bensch, S. & Hasselquist, D. Between‐year variation of MHC allele frequencies in great reed warblers: selection or drift? J. Evol. Biol. 17, 485–492 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Charbonnel, N. & Pemberton, J. A long-term genetic survey of an ungulate population reveals balancing selection acting on MHC through spatial and temporal fluctuations in selection. Heredity 95, 377–388 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Global Tuberculosis Report 2023 (Global Tuberculosis Programme, 2023).

  • Reis, A. C., Ramos, B., Pereira, A. C. & Cunha, M. V. The hard numbers of tuberculosis epidemiology in wildlife: a meta‐regression and systematic review. Transbound. Emerg. Dis. 68, 3257–3276 (2021).

    PubMed 

    Google Scholar 

  • Fernandez-de-Mera, I. G. et al. Impact of major histocompatibility complex class II polymorphisms on Iberian red deer parasitism and life history traits. Infect. Genet. Evol. 9, 1232–1239 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Galindo, R. C. et al. Gene expression profiles of European wild boar naturally infected with Mycobacterium bovis. Vet. Immunol. Immunopathol. 129, 119–125 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Sveinbjornsson, G. et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat. Genet. 48, 318–322 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waters, W. et al. MHC class II-restricted, CD4+ T-cell proliferative responses of peripheral blood mononuclear cells from Mycobacterium bovis-infected white-tailed deer. Vet. Immunol. Immunopathol. 76, 215–229 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Clutton-Brock, T. & Manser, M. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (eds Koenig, W. D. & Dickinson, J. L.) 294–317 (Cambridge Univ. Press, 2016); https://doi.org/10.1017/CBO9781107338357.018

  • Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl Acad. Sci. USA 103, 12005–12010 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dyble, M., Houslay, T. M., Manser, M. B. & Clutton-Brock, T. Intergroup aggression in meerkats. Proc. R. Soc. B 286, 20191993 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller‐Klein, N. et al. Two decades of tuberculosis surveillance reveal disease spread, high levels of exposure and mortality and marked variation in disease progression in wild meerkats. Transbound. Emerg. Dis. 69, 3274–3284 (2022).

    PubMed 

    Google Scholar 

  • Parsons, S. D. C., Drewe, J. A., Gey Van Pittius, N. C., Warren, R. M. & Van Helden, P. D. Novel cause of tuberculosis in meerkats, South Africa. Emerg. Infect. Dis. 19, 2004–2007 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. Biol. Sci. 277, 633–642 (2010).

    PubMed 

    Google Scholar 

  • Donadio, J. et al. Characterizing tuberculosis progression in wild meerkats (Suricata suricatta) from fecal samples and clinical signs. J. Wildl. Dis. 58, 309–321 (2022).

    PubMed 

    Google Scholar 

  • Drewe, J. A., Foote, A. K., Sutcliffe, R. L. & Pearce, G. P. Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta). J. Comp. Pathol. 140, 12–24 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Migalska, M. et al. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Mol. Ecol. 31, 3400–3415 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. et al. Contemporary selection on MHC genes in a free‐living ruminant population. Ecol. Lett. 25, 828–838 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hess, C. M., Wang, Z. & Edwards, S. V. Evolutionary genetics of Carpodacus mexicanus, a recently colonized host of a bacterial pathogen, Mycoplasma gallisepticum. Genetica 129, 217–225 (2007).

    PubMed 

    Google Scholar 

  • Winternitz, J. C., Wares, J. P., Yabsley, M. J. & Altizer, S. Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol. Ecol. 28, 957–975 (2014).

    Google Scholar 

  • Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the MHC class IIb in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096 (2010).

    PubMed 

    Google Scholar 

  • Brouwer, L. et al. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations. Mol. Ecol. 19, 3444–3455 (2010).

    PubMed 

    Google Scholar 

  • Worley, K. et al. MHC heterozygosity and survival in red junglefowl. Mol. Ecol. 19, 3064–3075 (2010).

    PubMed 

    Google Scholar 

  • Savage, A. E., Mulder, K. P., Torres, T. & Wells, S. Lost but not forgotten: MHC genotypes predict overwinter survival despite depauperate MHC diversity in a declining frog. Conserv. Genet. 19, 309–322 (2018).

    CAS 

    Google Scholar 

  • Kloch, A., Baran, K., Buczek, M., Konarzewski, M. & Radwan, J. MHC influences infection with parasites and winter survival in the root vole Microtus oeconomus. Evol. Ecol. 27, 635–653 (2013).

    Google Scholar 

  • Sauermann, U. et al. Mhc class I haplotypes associated with survival time in simian immunodeficiency virus (SIV)-infected rhesus macaques. Genes Immun. 9, 69–80 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Martino, M., Lodi, L., Galli, L. & Chiappini, E. Immune response to Mycobacterium tuberculosis: a narrative review. Front. Pediatr. 7, 350 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferluga, J., Yasmin, H., Al-Ahdal, M. N., Bhakta, S. & Kishore, U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology 225, 151951 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ndong Sima, C. A. A. et al. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 75, 215–230 (2023).

    PubMed 

    Google Scholar 

  • Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kalbe, M. et al. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc. R. Soc. B 276, 925–934 (2008).

    PubMed Central 

    Google Scholar 

  • Canal, D. et al. MHC class II supertypes affect survival and lifetime reproductive success in a migratory songbird. Mol. Ecol. 33, e17554 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Sepil, I., Lachish, S. & Sheldon, B. C. MHC-linked survival and lifetime reproductive success in a wild population of great tits. Mol. Ecol. 22, 384–396 (2013).

    PubMed 

    Google Scholar 

  • Paterson, S., Wilson, K. & Pemberton, J. M. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl Acad. Sci. USA 95, 3714–3719 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arora, J. et al. HLA heterozygote advantage against HIV-1 is driven by quantitative and qualitative differences in HLA allele-specific peptide presentation. Mol. Biol. Evol. 37, 639–650 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Froeschke, G. & Sommer, S. MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol. Biol. Evol. 22, 1254–1259 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Dippenaar, A. et al. Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis 95, 682–688 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Olayemi, A. et al. MHC-I alleles mediate clearance and antibody response to the zoonotic Lassa virus in Mastomys rodent reservoirs. PLoS Negl. Trop. Dis. 18, e0011984 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schad, J., Dechmann, D. K., Voigt, C. C. & Sommer, S. Evidence for the ‘good genes’ model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris. PLoS ONE 7, e37101 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westerdahl, H. et al. Associations between malaria and MHC genes in a migratory songbird. Proc. R. Soc. B 272, 1511–1518 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleischer, R. et al. Immunogenetic-pathogen networks shrink in Tome’s spiny rat, a generalist rodent inhabiting disturbed landscapes. Commun. Biol. 7, 1–11 (2024).

    Google Scholar 

  • Alexander, K. A. et al. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo). mBio https://doi.org/10.1128/mbio.00281-16 (2016).

  • Patterson, S., Drewe, J. A., Pfeiffer, D. U. & Clutton‐Brock, T. H. Social and environmental factors affect tuberculosis related mortality in wild meerkats. J. Anim. Ecol. 86, 442–450 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mares, R., Bateman, A. W., English, S., Clutton-Brock, T. H. & Young, A. J. Timing of predispersal prospecting is influenced by environmental, social and state-dependent factors in meerkats. Anim. Behav. 88, 185–193 (2014).

    Google Scholar 

  • Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Density-dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).

    PubMed 

    Google Scholar 

  • Paniw, M. et al. Higher temperature extremes exacerbate negative disease effects in a social mammal. Nat. Clim. Chang. 12, 284–290 (2022).

    Google Scholar 

  • Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Risely, A. et al. Climate change drives loss of bacterial gut mutualists at the expense of host survival in wild meerkats. Glob. Change Biol. 29, 5816–5828 (2023).

    CAS 

    Google Scholar 

  • Alexander, K. A., Sanderson, C. E. & Laver, P. N. in Tuberculosis, Leprosy and Mycobacterial Diseases of Man and Animals: The Many Hosts of Mycobacteria (eds Mukundan, H. et al.) 386–401 (CABI, 2015); https://doi.org/10.1079/9781780643960.0386

  • Gortázar, C., De La Fuente, J., Perelló, A. & Domínguez, L. Will we ever eradicate animal tuberculosis? Ir. Vet. J. 76, 24 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thorley, J., Duncan, C., Gaynor, D., Manser, M. B. & Clutton-Brock, T. Disentangling the effects of temperature and rainfall on the population dynamics of Kalahari meerkats. Oikos 2025, e10988 (2025).

    Google Scholar 

  • Duncan, C., Manser, M. B. & Clutton‐Brock, T. Decline and fall: the causes of group failure in cooperatively breeding meerkats. Ecol. Evol. 11, 14459–14474 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van de Ven, T. M., Fuller, A. & Clutton‐Brock, T. H. Effects of climate change on pup growth and survival in a cooperative mammal, the meerkat. Funct. Ecol. 34, 194–202 (2020).

    Google Scholar 

  • Kutsukake, N. & Clutton-Brock, T. H. The number of subordinates moderates intrasexual competition among males in cooperatively breeding meerkats. Proc. R. Soc. B 275, 209–216 (2007).

    PubMed Central 

    Google Scholar 

  • Clutton‐Brock, T. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Eco 37, 69–80 (1999).

    Google Scholar 

  • Nielsen, J. F. et al. Inbreeding and inbreeding depression of early life traits in a cooperative mammal. Mol. Ecol. 21, 2788–2804 (2012).

    PubMed 

    Google Scholar 

  • Spong, G. F., Hodge, S. J., Young, A. J. & Clutton‐Brock, T. H. Factors affecting the reproductive success of dominant male meerkats. Mol. Ecol. 17, 2287–2299 (2008).

    PubMed 

    Google Scholar 

  • Coulon, A. GENHET: an easy‐to‐use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Gillingham, M. A. et al. A novel workflow to improve genotyping of multigene families in wildlife species: an experimental set‐up with a known model system. Mol. Ecol. Resour. 21, 982–998 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. Preprint at bioRxiv https://doi.org/10.1101/254797 (2018).

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Silver, L. W. et al. A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol. Ecol. 31, 3286–3303 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peel, E. et al. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience 11, giac100 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lighten, J. et al. Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat. Commun. 8, 1294 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwensow, N., Fietz, J., Dausmann, K. H. & Sommer, S. Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity 99, 265–277 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Sepil, I., Lachish, S., Hinks, A. E. & Sheldon, B. C. MHC supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc. R. Soc. B 280, 20130134 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Sandberg, M., Eriksson, L., Jonsson, J., Sjöström, M. & Wold, S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem. 41, 2481–2491 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roved, J., Hansson, B., Stervander, M., Hasselquist, D. & Westerdahl, H. MHCtools—an R package for MHC high‐throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non‐model organisms. Mol. Ecol. Resour. 22, 2775–2792 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaigher, A., Burri, R., San-Jose, L. M., Roulin, A. & Fumagalli, L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol. Ecol. 28, 5115–5132 (2019).

    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • Posit PBC. RStudio: integrated development environment for R. GitHub https://github.com/rstudio/rstudio (2012).

  • Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).

    Google Scholar 

  • Lüdecke, M. D. sjPlot: data visualization for statistics in social science. CRAN https://cran.r-project.org/package=sjPlot (2023).

  • Bartón, K. MuMIn: model selection and model averaging based on information criteria. CRAN https://cran.r-project.org/package=MuMIn (2018).

  • Müller-Klein, N. et al. Twenty-years of tuberculosis-driven selection shaped the evolution of meerkat MHC. Datasets and code. figshare https://doi.org/10.6084/m9.figshare.26172985 (2025).

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  • Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Soft. 69, 1–17 (2016).

    Google Scholar 

  • Therneau, T. M. coxme: mixed effects Cox models. R Package v.2. CRAN https://cran.r-project.org/package=coxme (2015).

  • Continue Reading