Amini-Salehi E, Letafatkar N, Norouzi N, Joukar F, Habibi A, Javid M, et al. Global prevalence of nonalcoholic fatty liver disease: an updated review meta-analysis comprising a population of 78 million from 38 countries. Arch Med Res. 2024;55:103043. https://doi.org/10.1016/j.arcmed.2024.103043.
Google Scholar
Lee EJ, Choi M, Ahn SB, Yoo J-J, Kang SH, Cho Y, et al. Prevalence of nonalcoholic fatty liver disease in pediatrics and adolescents: a systematic review and meta-analysis. World J Pediatr. 2024;20:569–80. https://doi.org/10.1007/s12519-024-00814-1.
Google Scholar
Bardugo A, Bendor CD, Zucker I, Lutski M, Cukierman-Yaffe T, Derazne E, et al. Adolescent Nonalcoholic Fatty Liver Disease and Type 2 Diabetes in Young Adulthood. J Clin Endocrinol Metab. 2021;106:e34-44. https://doi.org/10.1210/clinem/dgaa753.
Google Scholar
Lv J, Zhang Y, Li X, Guo H, Yang C. The burden of non-alcoholic fatty liver disease among working-age people in the Western Pacific Region, 1990–2019: an age–period–cohort analysis of the global burden of disease study. BMC Public Health. 2024;24:1852. https://doi.org/10.1186/s12889-024-19047-y.
Google Scholar
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202–9. https://doi.org/10.1016/j.jhep.2020.03.039.
Google Scholar
Lim GEH, Tang A, Ng CH, Chin YH, Lim WH, Tan DJH, et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin Gastroenterol Hepatol. 2023;21:619-629.e7. https://doi.org/10.1016/j.cgh.2021.11.038.
Google Scholar
Liu J, Ayada I, Zhang X, Wang L, Li Y, Wen T, et al. Estimating Global Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Adults. Clin Gastroenterol Hepatol. 2022;20:e573–82. https://doi.org/10.1016/j.cgh.2021.02.030.
Google Scholar
Chan KE, Koh TJL, Tang ASP, Quek J, Yong JN, Tay P, et al. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: a meta-analysis and systematic review of 10 739 607 individuals. J Clin Endocrinol Metab. 2022;107:2691–700. https://doi.org/10.1210/clinem/dgac321.
Google Scholar
Chen Y, Li H, Li S, Xu Z, Tian S, Wu J, et al. Prevalence of and risk factors for metabolic associated fatty liver disease in an urban population in China: a cross-sectional comparative study. BMC Gastroenterol. 2021;21:212. https://doi.org/10.1186/s12876-021-01782-w.
Google Scholar
Kan C, Zhang K, Wang Y, Zhang X, Liu C, Ma Y, et al. Global burden and future trends of metabolic dysfunction-associated steatotic liver disease: 1990–2021 to 2045. Ann Hepatol. 2025;30:101898. https://doi.org/10.1016/j.aohep.2025.101898.
Google Scholar
Lu F, Liu J, She B, Yang H, Ji F, Zhang L. Global trends and inequalities of liver complications related to metabolic dysfunction-associated steatotic liver disease: an analysis from 1990 to 2021. Liver Int. 2025;45:e16120. https://doi.org/10.1111/liv.16120.
Google Scholar
Neri CR, Scapaticci S, Chiarelli F, Giannini C. Liver steatosis: a marker of metabolic risk in children. IJMS. 2022;23:4822. https://doi.org/10.3390/ijms23094822.
Google Scholar
Fang Y-L, Chen H, Wang C-L, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model.” WJG. 2018;24:2974–83. https://doi.org/10.3748/wjg.v24.i27.2974.
Google Scholar
Huh JH, Kim KJ, Kim SU, Cha B-S, Lee B-W. Obesity is an important determinant of severity in newly defined metabolic dysfunction-associated fatty liver disease. Hepatobiliary Pancreat Dis Int. 2022;21:241–7. https://doi.org/10.1016/j.hbpd.2022.03.009.
Google Scholar
Patton HM, Yates K, Unalp-Arida A, Behling CA, Huang TT-K, Rosenthal P, et al. Association between metabolic syndrome and liver histology among children with nonalcoholic fatty liver disease. Am J Gastroenterol. 2010;105:2093–102. https://doi.org/10.1038/ajg.2010.152.
Google Scholar
Abenavoli L, Spagnuolo R, Scarlata GGM, Gambardella ML, Boccuto L, Méndez-Sánchez N, et al. Metabolic dysfunction-associated steatotic liver disease in patients with inflammatory bowel diseases: a pilot study. Life. 2024;14:1226. https://doi.org/10.3390/life14101226.
Google Scholar
Karlas T, Petroff D, Sasso M, Fan J-G, Mi Y-Q, De Lédinghen V, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66:1022–30. https://doi.org/10.1016/j.jhep.2016.12.022.
Google Scholar
Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64:319–34. https://doi.org/10.1097/MPG.0000000000001482.
Google Scholar
Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement. The Lancet Gastroenterology & Hepatology. 2021;6:864–73. https://doi.org/10.1016/S2468-1253(21)00183-7.
Google Scholar
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care. 2023;46Supplement_1:S19–40. https://doi.org/10.2337/dc23-S002
Fu CE, Teng M, Tung D, Ramadoss V, Ong C, Koh B, et al. Sex and race-ethnic disparities in metabolic dysfunction-associated steatotic liver disease: an analysis of 40,166 individuals. Dig Dis Sci. 2024;69:3195–205. https://doi.org/10.1007/s10620-024-08540-4.
Google Scholar
Shaheen M, Schrode KM, Pan D, Kermah D, Puri V, Zarrinpar A, et al. Sex-specific differences in the association between race/ethnicity and NAFLD among US population. Front Med. 2021;8:795421. https://doi.org/10.3389/fmed.2021.795421.
Google Scholar
Sabotta CM, Kwan S-Y, Petty LE, Below JE, Joon A, Wei P, et al. Genetic variants associated with circulating liver injury markers in Mexican Americans, a population at risk for non-alcoholic fatty liver disease. Front Genet. 2022;13:995488. https://doi.org/10.3389/fgene.2022.995488.
Google Scholar
Manusov EG, Diego VP, Almeida M, Ortiz D, Curran JE, Galan J, et al. Genotype-by-environment interactions in nonalcoholic fatty liver disease and chronic illness among Mexican Americans: the role of acculturation stress. Genes. 2024;15:1006. https://doi.org/10.3390/genes15081006.
Google Scholar
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. Exploration of Medicine. 2020;1:51–74. https://doi.org/10.37349/emed.2020.00005.
Google Scholar
Chan KE, Ng CH, Fu CE, Quek J, Kong G, Goh YJ, et al. The spectrum and impact of metabolic dysfunction in MAFLD: a longitudinal cohort analysis of 32,683 overweight and obese individuals. Clin Gastroenterol Hepatol. 2023;21:2560-2569.e15. https://doi.org/10.1016/j.cgh.2022.09.028.
Google Scholar
Lee J-H, Jeon S, Lee HS, Kwon Y-J. Association between waist circumference trajectories and incident non-alcoholic fatty liver disease. Obes Res Clin Pract. 2023;17:398–404. https://doi.org/10.1016/j.orcp.2023.09.005.
Google Scholar
Manco M, Bedogni G, Marcellini M, Devito R, Ciampalini P, Sartorelli MR, et al. Waist circumference correlates with liver fibrosis in children with non-alcoholic steatohepatitis. Gut. 2008;57:1283–7. https://doi.org/10.1136/gut.2007.142919.
Google Scholar
Xing Y, Fan J, Wang H-J, Wang H. Comparison of MAFLD and NAFLD characteristics in children. Children. 2023;10:560. https://doi.org/10.3390/children10030560.
Google Scholar
Ye P, Gao L, Xia Z, Peng L, Shi X, Ma J, et al. Association between non-alcoholic fatty liver disease and metabolic abnormalities in children with different weight statuses. Public Health. 2024;235:160–6. https://doi.org/10.1016/j.puhe.2024.06.004.
Google Scholar
Flisiak-Jackiewicz M, Bobrus-Chociej A, Wasilewska N, Lebensztejn DM. From nonalcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MAFLD)—new terminology in pediatric patients as a step in good scientific direction? JCM. 2021;10:924. https://doi.org/10.3390/jcm10050924.
Google Scholar
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23:201–29. https://doi.org/10.1210/edrv.23.2.0461.
Google Scholar
Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48:434–41. https://doi.org/10.1007/s00535-013-0758-5.
Google Scholar
Huang X, Chen Q, Su Q, Gong J, Wu L, Xiang L, et al. The mediation role of insulin resistance and chronic systemic inflammation in the association between obesity and NAFLD: two cross-sectional and a mendelian randomization study. CLEP. 2025;17:287–302. https://doi.org/10.2147/CLEP.S508514.
Google Scholar
Smith SK, Perito ER. Nonalcoholic liver disease in children and adolescents. Clin Liver Dis. 2018;22:723–33. https://doi.org/10.1016/j.cld.2018.07.001.
Google Scholar
Lin S, Huang J, Wang M, Kumar R, Liu Y, Liu S, et al. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int. 2020;40:2082–9. https://doi.org/10.1111/liv.14548.
Google Scholar