Edi CAV, Koudou BG, Bellai L, Adja AM, Chouaibou M, Bonfoh B, et al. Long-term trends in Anopheles gambiae insecticide resistance in Côte d’Ivoire. Parasit Vectors. 2014;7: 500.
Google Scholar
WHO. World malaria report. Geneva: World Health Organization; 2023. p. 2023.
Ibrahim EA, Wamalwa M, Odindi J, Tonnang HEZ. Insights and challenges of insecticide resistance modelling in malaria vectors: a review. Parasit Vectors. 2024;17:174.
Google Scholar
Kulma K, Saddler A, Koella JC. Effects of age and larval nutrition on phenotypic expression of insecticide-resistance in Anopheles mosquitoes. PLoS ONE. 2013;8: e58322.
Google Scholar
Glunt KD, Oliver SV, Hunt RH, Paaijmans KP. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar J. 2018;17:131.
Google Scholar
Oliver SV, Lyons CL, Brooke BD. The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Sci Rep. 2022;12:3877.
Google Scholar
Rivero A, Magaud A, Nicot A, Vézilier J. Energetic cost of insecticide resistance in Culex pipiens mosquitoes. J Med Entomol. 2011;48:694–700.
Google Scholar
Oliver SV, Brooke BD. The role of oxidative stress in the longevity and insecticide resistance phenotype of the major malaria vectors Anopheles arabiensis and Anopheles funestus. PLoS ONE. 2016;11: e0151049.
Google Scholar
Champion CJ, Xu J. Redox state affects fecundity and insecticide susceptibility in Anopheles gambiae. Sci Rep. 2018;8:13054.
Google Scholar
Adhikari K, Khanikor B. Gradual reduction of susceptibility and enhanced detoxifying enzyme activities of laboratory-reared Aedes aegypti under exposure of temephos for 28 generations. Toxicol Rep. 2021;8:1883–91.
Google Scholar
Hernandez EP, Anisuzzaman AM, Kawada H, Kwofie KD, Ladzekpo D, et al. Ambivalent roles of oxidative stress in triangular relationships among arthropod vectors, pathogens and hosts. Antioxidants. 2022;11:1254.
Google Scholar
Paré PSL, Hien DFDS, Bayili K, Yerbanga RS, Cohuet A, Carrasco D, et al. Natural plant diet impacts phenotypic expression of pyrethroid resistance in Anopheles mosquitoes. Sci Rep. 2022;12(1): 21431.
Google Scholar
Kouadio F-PA, Wipf NC, Nygble AS, Fodjo BK, Sadia CG, Vontas J, et al. Relationship between insecticide resistance profiles in Anopheles gambiae sensu lato and agricultural practices in Côte d’Ivoire. Parasit Vectors. 2023;16: 270.
Google Scholar
Fodjo BK, Koudou BG, Tia E, Saric J, et al. Insecticides resistance status of in areas of varying agrochemical use in Côte d’Ivoire. Biomed Res Int. 2018;18:2874160.
WHO. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. Genève: World Health Organization; 2022.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2024.
Fox J, Weisberg S. An R companion to applied regression, 3rd Edn. https://www.john-fox.ca/Companion/
Machani MG, Ochomo E, Sang D, Bonizzoni M, Zhou G, Githeko AK, et al. Influence of blood meal and age of mosquitoes on susceptibility to pyrethroids in Anopheles gambiae from Western Kenya. Malar J. 2019;18:112.
Google Scholar
Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and biological activities of Barleria (Acanthaceae). Plants. 2021;11:82.
Google Scholar
Parachnowitsch AL, Manson JS, Sletvold N. Evolutionary ecology of nectar. Ann Bot. 2019;123:247–61.
Google Scholar
Nicolson SW. Sweet solutions: nectar chemistry and quality. Philos Trans R Soc Lond B Biol Sci. 2022;377: 20210163.
Google Scholar
Chalcoff VR, Aizen MA, Galetto L. Nectar concentration and composition of 26 species from the temperate forest of South America. Ann Bot. 2006;97:413–21.
Google Scholar
Njoroge TM, Calla B, Berenbaum MR, Stone CM. Specific phytochemicals in floral nectar up-regulate genes involved in longevity regulation and xenobiotic metabolism, extending mosquito life span. Ecol Evol. 2021;11:8363–80.
Google Scholar
Manda H, Gouagna LC, Nyandat E, Kabiru EW, Jackson RR, Foster WA, et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol. 2007;21(1):103–11.
Google Scholar
Hien DFDS, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 2016;12: e1005773.
Google Scholar
Rodríguez MM, Bisset JA, Fernández D. Determination in vivo of the role of esterase and glutathione transferase enzymes in pyrethroid resistance of Aedes aegypti (Diptera: Culicidae). Rev Cubana Med Trop. 2007;59:209–12.
Google Scholar
Martinez-Sobrido L, Toral FA. New advances on Zika Virus Research. MDPI; 2019. https://books.google.com/books/about/New_Advances_on_Zika_Virus_Research.html?hl=&id=z86PDwAAQBAJ
Oliveira JHM, Gonçalves RLS, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RFS, et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 2011;7: e1001320.
Google Scholar
Briegel H, Lea AO. Relationship between protein and proteolytic activity in the midgut of mosquitoes. J Insect Physiol. 1975;21(9):1597–604.
Google Scholar
Esquivel CJ, Cassone BJ, Piermarini PM. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing. PeerJ. 2016;4: e1784.
Google Scholar
Chouaibou MS, Chabi J, Bingham GV, Knox TB, et al. Augmentation de la sensibilité aux insecticides avec le vieillissement des moustiques sauvages Anopheles gambiae de Côte d’Ivoire. BMC Infect Dis. 2012;12:214.
Google Scholar
Lines JD, Nassor NS. DDT resistance in Anopheles gambiae declines with mosquito age. Med Vet Entomol. 1991;5:261–5.
Google Scholar
Mbepera S, Nkwengulila G, Peter R, Mausa EA, Mahande AM, Coetzee M. The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of Northern Tanzania. Malar J. 2017;16:364.
Google Scholar
Hodjati MH, Curtis CF. Evaluation of the effect of mosquito age and prior exposure to insecticide on pyrethroid tolerance in Anopheles mosquitoes (Diptera : Culicidae). Bull Entomol Res. 1999;89:329–37.
Jones CM, Sanou A, Guelbeogo WM, Sagnon N, Johnson PC, Ranson H. Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso. Malar J. 2012;11: 24.
Google Scholar
Murataliev MB, Guzov VM, Walker FA, Feyereisen R. P450 reductase and cytochrome b5 interactions with cytochrome P450: effects on house fly CYP6A1 catalysis. Insect Biochem Mol Biol. 2008;38:1008–15.
Google Scholar
Zhu YC, Caren J, Reddy GVP, Li W, Yao J. Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comp Biochem Physiol C Toxicol Pharmacol. 2020;238: 108844.
Google Scholar
Durak R, Dampc J, Kula-Maximenko M, Mołoń M, Durak T. Changes in antioxidative, oxidoreductive and detoxification enzymes during development of aphids and temperature increase. Antioxidants. 2021;10: 1181.
Google Scholar