Effect of natural environmental changes on Hainan migratory population with hypertension in China and related plasma metabolism features

  • Zhang, Q., Zhang, H. & Xu, H. Health tourism destinations as therapeutic landscapes: Understanding the health perceptions of senior seasonal migrants. Soc. Sci. Med. 279, 113951 (2021).

    PubMed 

    Google Scholar 

  • McLeman, R. A. & Hunter, L. M. Migration in the context of vulnerability and adaptation to climate change: insights from analogues. Wiley Interdiscip Rev. Clim. Change. 1 (3), 450–461 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Casado-Díaz, M. A. Retiring to spain: an analysis of differences among North European nationals. J. Ethn. Migr. Stud. 32, 1321–1339 (2006).

    Google Scholar 

  • Hainan provincial bureau of statistics, major indicators on population, hainan statistical year book. (2019). https://stats.hainan.gov.cn/tjj/wzss/search.html?searchWord (Accessed 31 August 2019).

  • Chen, Q. et al. Factors influencing changes in the quality of life of the Hainan migratory population with hypertension: a survey of the Chengmai Mangrove Bay community. BMC Public. Health. 25 (1), 49 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hainan provincial bureau of statistics, resources and environment, hainan statistical year book. China Statistics Press, Beijing, 2019. (2019). https://stats.hainan.gov.cn/tjj/wzss/search.html?searchWord (Accessed 31 August 2019).

  • Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173 (4), 822–837 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bundy, J. G., Davey, M. P. & Viant, M. R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21 (2009).

    CAS 

    Google Scholar 

  • Liang, D. et al. A state-of-the-science review on high-resolution metabolomics application in air pollution health research: current progress, analytical challenges, and recommendations for future direction. Environ. Health Perspect. 131 (5), 56002 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Walker, D. I. et al. Metabolomic assessment of exposure to near-highway ultrafine particles. J. Expo Sci. Environ. Epidemiol. 29 (4), 469–483 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Nassan, F. L. et al. Metabolomic signatures of the short-term exposure to air pollution and temperature. Environ. Res. 201, 111553 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, P. et al. Effect of ambient air quality on exacerbation of COPD in patients and its potential mechanism. Int. J. Chron. Obstruct Pulmon Dis. 14, 1517–1526 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cabieses, B., Uphoff, E., Pinart, M., Antó, J. M. & Wright, J. A systematic review on the development of asthma and allergic diseases in relation to international immigration: the leading role of the environment confirmed. PLoS One. 9 (8), e105347 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatnagar, A. Environmental determinants of cardiovascular disease. Circ. Res. 121 (2), 162–180 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Burden of cardiovascular diseases in china, 1990–2016: findings from the 2016 global burden of disease study. JAMA Cardiol. 4 (4), 342–352 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, R. & Popham, F. Effect of exposure to natural environment on health inequalities: an observational population study. Lancet 372 (9650), 1655–1660 (2008).

    PubMed 

    Google Scholar 

  • WHO.Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization. (2010). Available at: http://apps.Who.Int/iris/bitstream/10665/44399/1/9789241599979_eng. pdf(accessed on April 2023).

  • Yang, B. Y. et al. Community greenness, blood pressure, and hypertension in urban dwellers: the 33 communities Chinese health study. Environ. Int. 126, 727–734 (2019).

    PubMed 

    Google Scholar 

  • Chang, L. T. et al. Short-term exposure to noise, fine particulate matter and nitrogen oxides on ambulatory blood pressure: A repeated-measure study. Environ. Res. 140, 634–640 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wei, J. et al. The ChinaHighPM10 dataset: generation, validation, and Spatiotemporal variations from 2015 to 2019 across China. Environ. Int. 146, 106290 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yilmaz, M. Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Sci. Total Environ. 856 (Pt 2), 159182 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    ADS 

    Google Scholar 

  • Huete, A. et al. Overview of the r-adiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    ADS 

    Google Scholar 

  • Reid, C. E., Kubzansky, L. D., Li, J., Shmool, J. L. & Clougherty, J. E. It’s not easy assessing greenness: A comparison of NDVI datasets and neighborhood types and their associations with self-rated health in new York City. Health Place. 54, 92–101 (2018).

    PubMed 

    Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing massspectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78 (3), 779–787 (2006 ).

    CAS 
    PubMed 

    Google Scholar 

  • Wen, B., Mei, Z., Zeng, C. & Liu, S. MetaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 18 (1), 183 (2017).

    Google Scholar 

  • Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28 (11), 1947–1951 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53 (D1), 672–677 (2025).

    Google Scholar 

  • Riley, C. J. & Gavin, M. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High. Alt Med. Biol. 18 (2), 102–113 (2017).

    PubMed 

    Google Scholar 

  • Furuyashiki, A., Tabuchi, K., Norikoshi, K., Kobayashi, T. & Oriyama, S. A comparative study of the physiological and psychological effects of forest bathing (shinrin-yoku) on working age people with and without depressive tendencies. Environ. Health Prev. Med. 24 (1), 46 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • National Forestry and Grassland Bureau. China Forest Resources Report(2014–2018). (2019). https://www.forestry.gov.cn/ (Accessed 31 May 2019).

  • Department of Ecology and Environment of Hainan Province. Bulletin of Hainan Province on Environmental Status. (2024). https://hnsthb.hainan.gov.cn/(Accessed 4 March 2024).

  • Lu, X. et al. Metabolomic changes after subacute exposure to polycyclic aromatic hydrocarbons: a natural experiment among healthy travelers from Los Angeles to Beijing. Environ. Sci. Technol. 55 (8), 5097–5105 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, K. S. et al. Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 581 (23), 4411–4416 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bank, S. et al. Polymorphisms in the nfkb, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 49 (7), 890–903 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Mundra, P. A. et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 3 (17), e121326 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, J., Luo, F., Ruan, G., Peng, R. & Li, X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis. 16 (1), 233 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. H. et al. Krill oil-incorporated liposomes as an effective nanovehicle to ameliorate the inflammatory responses of DSS-induced colitis. Int. J. Nanomed. 14, 8305–8320 (2019).

    CAS 

    Google Scholar 

  • Treede, I. et al. Anti-inflammatory effects of phosphatidylcholine. J. Biol. Chem. 282 (37), 27155–27164 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Paapstel, K. et al. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients. IJC Metab. Endoer. 11, 13–18 (2016).

    Google Scholar 

  • Niu, Z. et al. Plasma lipidomic subclasses and risk of hypertension in middle-aged and elderly Chinese. Phenomics 2 (5), 283–294 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantalupo, A. et al. S1PR1 (Sphingosine-1-Phosphate receptor 1) signaling regulates blood flow and pressure. Hypertension 70 (2), 426–434 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Tefas, C., Socaciu, C., Moraru, C. & Tanțău, M. Lipidomic signatures of colonic inflammatory bowel diseases: a pilot study. J. Gastrointestin Liver Dis. 28, 246–247 (2019).

    PubMed 

    Google Scholar 

  • Ke, C., Zhu, X., Zhang, Y. & Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics 14 (9), 117 (2018).

    PubMed 

    Google Scholar 

  • Anthonymuthu, T. S., Kenny, E. M., Lamade, A. M., Kagan, V. E. & Bayır, H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol. Med. 124, 493–503 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borodzicz-Jażdżyk, S., Jażdżyk, P., Łysik, W., Cudnoch-Jȩdrzejewska, A. & Czarzasta, K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front. Cardiovasc. Med. 9, 915961 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, Y., Tian, Y., You, X., Du, J. & Huang, J. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids Health Dis. 21 (1), 101 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, J. et al. Is residential greenness associated with dyslipidemia and lipid levels in Chinese rural-dwelling adults? The Henan rural cohort study. Environ. Sci. Pollut Res. Int. 29 (4), 5852–5862 (2022).

    PubMed 

    Google Scholar 

  • Yang, B. Y. et al. Association between residential greenness and metabolic syndrome in Chinese adults. Environ. Int. 135, 105388 (2020).

    PubMed 

    Google Scholar 

  • Ning, J. et al. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. Sci. Total Environ. 782, 146855 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wallwork, R. S. et al. Ambient fine particulate matter, outdoor temperature, and risk of metabolic syndrome. Am. J. Epidemiol. 185 (1), 30–39 (2017).

    PubMed 

    Google Scholar 

  • Guo, Q., Zhao, Y., Xue, T., Zhang, J. & Duan, X. Association of PM2.5 and its chemical compositions with metabolic syndrome: A nationwide study in middle-aged and older Chinese adults. Int. J. Environ. Res. Public. Health. 19 (22), 14671 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Causality of particulate matter on cardiovascular diseases and cardiovascular biomarkers. Front. Public. Health. 11, 1201479 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lan, T. et al. Metabolism disorder promotes isoproterenol-induced myocardial injury in mice with high temperature and high humidity and high-fat diet. BMC Cardiovasc. Disord. 22 (1), 133 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. S. et al. Design, modification and 3D QSAR studies of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives as inhibitors of B-Raf kinase. Bioorg. Med. Chem. 20 (20), 6048–6058 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Khode, S. et al. Synthesis and Pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 44 (4), 1682–1688 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Deng, L. et al. Prolonged exposure to high humidity and high temperature environment can aggravate influenza virus infection through intestinal flora and Nod/RIP2/NF-κB signaling pathway. Vet. Microbiol. 251, 108896 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading