Miranda JJ, Barrientos-Gutiérrez T, Corvalan C, Hyder AA, Lazo-Porras M, Oni T, et al. Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat Med. 2019;25:1667–79. https://doi.org/10.1038/s41591-019-0644-7.
Google Scholar
Han Y, Hu Y, Yu C, Sun D, Pang Y, Pei P, et al. Duration-dependent impact of cardiometabolic diseases and Multimorbidity on all-cause and cause-specific mortality: a prospective cohort study of 0.5 million participants. Cardiovasc Diabetol. 2023;22:135. https://doi.org/10.1186/s12933-023-01858-9.
Google Scholar
Kivimäki M, Kuosma E, Ferrie JE, Luukkonen R, Nyberg ST, Alfredsson L, et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health. 2017;2:e277–85. https://doi.org/10.1016/s2468-2667(17)30074-9.
Google Scholar
Chen W, Wang X, Chen J, You C, Ma L, Zhang W, et al. Household air pollution, adherence to a healthy lifestyle, and risk of cardiometabolic multimorbidity: results from the China health and retirement longitudinal study. Sci Total Environ. 2023;855:158896. https://doi.org/10.1016/j.scitotenv.2022.158896.
Google Scholar
Su B, Liu C, Chen L, Wu Y, Li J, Zheng X. Long-term exposure to PM2.5 and O3 with cardiometabolic multimorbidity: evidence among Chinese elderly population from 462 cities. Ecotoxicol Environ Saf. 2023;255:114790. https://doi.org/10.1016/j.ecoenv.2023.114790.
Google Scholar
Zhang D, Tang X, Shen P, Si Y, Liu X, Xu Z, et al. Multimorbidity of cardiometabolic diseases: prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study. BMJ Open. 2019;9:e024476. https://doi.org/10.1136/bmjopen-2018-024476.
Google Scholar
Yu B, Jia S, Sun T, Liu J, Jin J, Zhang S, et al. Sarcopenic obesity is associated with cardiometabolic Multimorbidity in Chinese middle-aged and older adults: a cross-sectional and longitudinal study. J Nutr Health Aging. 2024;28:100353. https://doi.org/10.1016/j.jnha.2024.100353.
Google Scholar
Collaboration TERF. Association of cardiometabolic Multimorbidity with mortality. JAMA. 2015;314:52. https://doi.org/10.1001/jama.2015.7008.
Google Scholar
Dove A, Xu W. Cardiometabolic Multimorbidity and cognitive decline. Lancet Healthy Longev. 2023;4:e241–2. https://doi.org/10.1016/s2666-7568(23)00053-3.
Google Scholar
Zhang H, Jiang S, Hao M, Li Y, Hu Z, Jiang X, et al. Association of cardiometabolic Multimorbidity with motoric cognitive risk syndrome in older adults. Alzheimers Dement (Amst). 2023;15:e12491. https://doi.org/10.1002/dad2.12491.
Google Scholar
Fortin M, Dubois M-F, Hudon C, Soubhi H, Almirall J. Multimorbidity and quality of life: a closer look. Health Qual Life Outcomes. 2007;5:52. https://doi.org/10.1186/1477-7525-5-52.
Google Scholar
Liu X, Zhang Y, Luo D, Chen B, Lai C, He C, et al. Association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and cardiometabolic Multimorbidity among middle-aged and older adults in China. BMC Public Health. 2025;25:570. https://doi.org/10.1186/s12889-025-21757-w.
Google Scholar
Ascaso JF, Pardo S, Real JT, Lorente RI, Priego A, Carmena R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care. 2003;26:3320–5. https://doi.org/10.2337/diacare.26.12.3320.
Google Scholar
Adeva-Andany MM, Martínez-Rodríguez J, González-Lucán M, Fernández-Fernández C, Castro-Quintela E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab Syndr. 2019;13:1449–55. https://doi.org/10.1016/j.dsx.2019.02.023.
Google Scholar
Tahapary DL, Pratisthita LB, Fitri NA, Marcella C, Wafa S, Kurniawan F, et al. Challenges in the diagnosis of insulin resistance: focusing on the role of HOMA-IR and tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16:102581. https://doi.org/10.1016/j.dsx.2022.102581.
Google Scholar
Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6:299–304. https://doi.org/10.1089/met.2008.0034.
Google Scholar
Wu Z, Liu L, Wang W, Cui H, Zhang Y, Xu J, et al. Triglyceride-glucose index in the prediction of adverse cardiovascular events in patients with premature coronary artery disease: a retrospective cohort study. Cardiovasc Diabetol. 2022;21:142. https://doi.org/10.1186/s12933-022-01576-8.
Google Scholar
Jiang Y, Shen J, Chen P, Cai J, Zhao Y, Liang J, et al. Association of triglyceride glucose index with stroke: from two large cohort studies and Mendelian randomization analysis. Int J Surg. 2024;110:5409–16. https://doi.org/10.1097/js9.0000000000001795.
Google Scholar
Wen J, Wang A, Liu G, Wang M, Zuo Y, Li W, et al. Elevated triglyceride-glucose (TyG) index predicts incidence of prediabetes: a prospective cohort study in China. Lipids Health Dis. 2020;19:226. https://doi.org/10.1186/s12944-020-01401-9.
Google Scholar
The Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95. https://doi.org/10.1016/s0140-6736(11)60105-0.
Google Scholar
Jabłonowska-Lietz B, Wrzosek M, Włodarczyk M, Nowicka G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol Pol. 2017;75:1185–91. https://doi.org/10.5603/kp.a2017.0149.
Google Scholar
Pasdar Y, Moradi S, Moludi J, Saiedi S, Moradinazar M, Hamzeh B, et al. Waist-to-height ratio is a better discriminator of cardiovascular disease than other anthropometric indicators in Kurdish adults. Sci Rep. 2020;10:16228. https://doi.org/10.5603/kp.a2017.0149.
Google Scholar
Moltrer M, Pala L, Cosentino C, Mannucci E, Rotella CM, Cresci B. Body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR) e waist body mass index (wBMI): which is better? Endocrine. 2022;76:578–83. https://doi.org/10.1007/s12020-022-03030-x.
Google Scholar
Dang K, Wang X, Hu J, Zhang Y, Cheng L, Qi X, et al. The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003–2018. Cardiovasc Diabetol. 2024;23:8. https://doi.org/10.1186/s12933-023-02115-9.
Google Scholar
Ren Q, Huang Y, Liu Q, Chu T, Li G, Wu Z. Association between triglyceride glucose-waist height ratio index and cardiovascular disease in middle-aged and older Chinese individuals: a nationwide cohort study. Cardiovasc Diabetol. 2024;23:247. https://doi.org/10.1186/s12933-024-02336-6.
Google Scholar
Xu F, Su X, Dai F, Ye Y, Hu P, Cheng H. Association between triglyceride glucose-waist height ratio and stroke: a population-based study. Front Endocrinol (Lausanne). 2025;16:1510493. https://doi.org/10.3389/fendo.2025.1510493.
Google Scholar
Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the China health and retirement longitudinal study (CHARLS). Int J Epidemiol. 2014;43:61–8. https://doi.org/10.1093/ije/dys203.
Google Scholar
Xu J, Cai D, Jiao Y, Liao Y, Shen Y, Shen Y, et al. Insights into the complex relationship between triglyceride glucose-waist height ratio index, mean arterial pressure, and cardiovascular disease: a nationwide prospective cohort study. Cardiovasc Diabetol. 2025;24:93. https://doi.org/10.1186/s12933-025-02657-0.
Google Scholar
Han Y, Hu Y, Yu C, Guo Y, Pei P, Yang L, et al. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur Heart J. 2021;42:3374–84. https://doi.org/10.1093/eurheartj/ehab413.
Google Scholar
Lai H, Tu Y, Liao C, Zhang S, He L, Li J. Joint assessment of abdominal obesity and non-traditional lipid parameters for primary prevention of cardiometabolic multimorbidity: insights from the China health and retirement longitudinal study 2011–2018. Cardiovasc Diabetol. 2025;24:109. https://doi.org/10.1186/s12933-025-02667-y.
Google Scholar
Lenfant C, Chobanian AV, Jones DW, Roccella EJ, Joint National Committee on the Prevention. Detection, evaluation, and treatment of high blood pressure. Seventh report of the joint National committee on the prevention, detection, evaluation, and treatment of high blood pressure.(JNC 7): resetting the hypertension sails. Hypertension. 2003;41:1178–9. https://doi.org/10.1161/01.hyp.0000107251.49515.c2.
Google Scholar
Khalaji A, Behnoush AH, Khanmohammadi S, Ghanbari Mardasi K, Sharifkashani S, Sahebkar A, et al. Triglyceride-glucose index and heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22:244. https://doi.org/10.1186/s12933-023-01973-7.
Google Scholar
Lee S-H, Kwon H-S, Park Y-M, Ha H-S, Jeong SH, Yang HK, et al. Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju metabolic disease cohort (CMC) study. PLoS One. 2014;9:e90430. https://doi.org/10.1371/journal.pone.0090430.
Google Scholar
Chen Q, Xiong S, Zhang Z, Yu X, Chen Y, Ye T, et al. Triglyceride-glucose index is associated with recurrent revascularization in patients with type 2 diabetes mellitus after percutaneous coronary intervention. Cardiovasc Diabetol. 2023;22:284. https://doi.org/10.1186/s12933-023-02011-2.
Google Scholar
Su W, Wang J, Chen K, Yan W, Gao Z, Tang X, et al. A higher TyG index level is more likely to have enhanced incidence of T2DM and HTN comorbidity in elderly Chinese people: a prospective observational study from the reaction study. Diabetol Metab Syndr. 2024;16:29. https://doi.org/10.1186/s13098-024-01258-3.
Google Scholar
Bian K, Hou C, Jin H, Feng X, Peng M, Zhao X, et al. Association between triglyceride-glucose indices and ischemic stroke risk across different glucose metabolism statuses. Diabetes Res Clin Pract. 2025;222:112064. https://doi.org/10.1016/j.diabres.2025.112064.
Google Scholar
Li S, An L, Fu Z, Zhang W, Liu H. Association between triglyceride-glucose related indices and all-cause and cause-specific mortality in the general population: a cohort study. Cardiovasc Diabetol. 2024;23:286. https://doi.org/10.1186/s12933-024-02390-0.
Google Scholar
Cheng L, Zhang F, Xue W, Yu P, Wang X, Wang H, et al. Association of dynamic change of triglyceride-glucose index during hospital stay with all-cause mortality in critically ill patients: a retrospective cohort study from MIMIC IV2.0. Cardiovasc Diabetol. 2023;22:142. https://doi.org/10.1186/s12933-023-01874-9.
Google Scholar
Yan Y, Wang D, Sun Y, Ma Q, Wang K, Liao Y, et al. Triglyceride-glucose index trajectory and arterial stiffness: results from Hanzhong adolescent hypertension cohort study. Cardiovasc Diabetol. 2022;21:33. https://doi.org/10.1186/s12933-022-01453-4.
Google Scholar
Li F, Wang Y, Shi B, Sun S, Wang S, Pang S, et al. Association between the cumulative average triglyceride glucose-body mass index and cardiovascular disease incidence among the middle-aged and older population: a prospective nationwide cohort study in China. Cardiovasc Diabetol. 2024;23:16. https://doi.org/10.1186/s12933-023-02114-w.
Google Scholar
Wong CW, Kwok CS, Narain A, Gulati M, Mihalidou AS, Wu P, et al. Marital status and risk of cardiovascular diseases: a systematic review and meta-analysis. Heart. 2018;104:1937–48. https://doi.org/10.1136/heartjnl-2018-313005.
Google Scholar
Leung CY, Huang H-L, Abe SK, Saito E, Islam MR, Rahman MS, et al. Association of marital status with total and cause-specific mortality in Asia. JAMA Netw Open. 2022;5:e2214181. https://doi.org/10.1001/jamanetworkopen.2022.14181.
Google Scholar
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17:122. https://doi.org/10.1186/s12933-018-0762-4.
Google Scholar
Singhal A. Endothelial dysfunction: role in obesity-related disorders and the early origins of CVD. Proc Nutr Soc. 2005;64:15–22. https://doi.org/10.1079/pns2004404.
Google Scholar
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:30. https://doi.org/10.3389/fendo.2016.00030.
Google Scholar
Domingo E, Marques P, Francisco V, Piqueras L, Sanz M-J. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res. 2024;200:107058. https://doi.org/10.1016/j.phrs.2024.107058.
Google Scholar
Pieri BLdaS, Rodrigues MS, Farias HR, Silveira G, de Ribeiro B, de Silveira V et al. PCL,. Role of oxidative stress on insulin resistance in diet-induced obesity mice. Int J Mol Sci. 2023;24:12088. https://doi.org/10.3390/ijms241512088
Fan Y, Yan Z, Li T, Li A, Fan X, Qi Z, et al. Primordial drivers of diabetes heart disease: comprehensive insights into insulin resistance. Diabetes Metab J. 2024;48:19–36. https://doi.org/10.4093/dmj.2023.0110.
Google Scholar
Wang T, Li M, Zeng T, Hu R, Xu Y, Xu M, et al. Association between insulin resistance and cardiovascular disease risk varies according to glucose tolerance status: a nationwide prospective cohort study. Diabetes Care. 2022;45:1863–72. https://doi.org/10.2337/dc22-0202.
Google Scholar
β Cell dysfunction. during progression of metabolic syndrome to type 2 diabetes – PubMed [Internet]. [cited 2025 Jun 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/31424428/https://doi.org/10.1172/jci129188
Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34:575–84. https://doi.org/10.1016/j.cjca.2017.12.005.
Google Scholar
Oishi Y, Manabe I. Organ system crosstalk in cardiometabolic disease in the age of multimorbidity. Front Cardiovasc Med. 2020;7:64. https://doi.org/10.3389/fcvm.2020.00064.
Google Scholar
Fu J, Yu MG, Li Q, Park K, King GL. Insulin’s actions on vascular tissues: physiological effects and pathophysiological contributions to vascular complications of diabetes. Mol Metab. 2021;52:101236. https://doi.org/10.1016/j.molmet.2021.101236.
Google Scholar
Sasaki N, Itakura Y, Toyoda M. Gangliosides contribute to vascular insulin resistance. Int J Mol Sci. 2019;20:1819. https://doi.org/10.3390/ijms20081819.
Google Scholar