Comparative susceptibility of wild and laboratory-reared Aedes and Anopheles larvae to ivermectin | Malaria Journal

  • Floate KD. Endectocide use in cattle and fecal residues: environmental effects in Canada. Can J Vet Res. 2006;70:1–10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikeda T. [Pharmacological effects of ivermectin, an antiparasitic agent for intestinal strongyloidiasis: its mode of action and clinical efficacy] (in Japanese). Nihon Yakurigaku Zasshi. 2003;122:527–38.

    CAS 
    PubMed 

    Google Scholar 

  • Campbell WC. Ivermectin, an antiparasitic agent. Med Res Re. 1993;13:61–79.

    CAS 

    Google Scholar 

  • Medleau L, Ristic Z, McElveen DR. Daily ivermectin for treatment of generalized demodicosis in dogs. Vet Dermatol. 1996;7:209–12.

    PubMed 

    Google Scholar 

  • Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008;31:91–8.

    CAS 
    PubMed 

    Google Scholar 

  • Omura S, Crump A. Ivermectin: panacea for resource-poor communities? Trends Parasitol. 2014;30:445–55.

    PubMed 

    Google Scholar 

  • Ottesen EA, Hooper PJ, Bradley M, Biswas G. The Global Programme to Eliminate Lymphatic Filariasis: health impact after 8 years. PLoS Negl Trop Dis. 2008;2: e317.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Panahi Y, Poursaleh Z, Goldust M. The efficacy of topical and oral ivermectin in the treatment of human scabies. Ann Parasitol. 2015;61:11–6.

    PubMed 

    Google Scholar 

  • Romani L, Whitfeld MJ, Koroivueta J, Kama M, Wand H, Tikoduadua L, et al. Mass drug administration for scabies control in a population with endemic disease. N Engl J Med. 2015;373:2305–13.

    CAS 
    PubMed 

    Google Scholar 

  • Sangaré AK, Doumbo OK, Raoult D. Management and treatment of human lice. BioMed Res Int. 2016;2016:8962685.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Crump A. Ivermectin: enigmatic multifaceted “wonder” drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 2017;70:495–505.

    CAS 
    PubMed 

    Google Scholar 

  • Herd RP, Sams RA, Ashcraft SM. Persistence of ivermectin in plasma and faeces following treatment of cows with ivermectin sustained-release, pour-on or injectable formulations. Int J Parasitol. 1996;26:1087–93.

    CAS 
    PubMed 

    Google Scholar 

  • Halley BA, Nessel RJ, Lu AYH, Roncalli RA. The environmental safety of ivermectin: an overview. Chemosphere. 1989;18:1565–72.

    CAS 

    Google Scholar 

  • Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014;13:417.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaccour C, Lines J, Whitty CJM. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010;202:113–6.

    PubMed 

    Google Scholar 

  • Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:365.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaccour CJ, Ngha’bi K, Abizanda G, Irigoyen Barrio A, Aldaz A, Okumu F, et al. Targeting cattle for malaria elimination: marked reduction of Anopheles arabiensis survival for over six months using a slow-release ivermectin implant formulation. Parasit Vectors. 2018;11:287.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2015;8:130.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pooda HS, Rayaisse J-B, Hien DFdS, Lefèvre T, Yerbanga SR, Bengaly Z, et al. Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria. Malar J. 2015;14 Suppl 1:496.

  • Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso. West Africa Med Vet Entomol. 2012;26:9–17.

    CAS 
    PubMed 

    Google Scholar 

  • Ouédraogo WM, Toé KH, Sombié A, Viana M, Bougouma C, Sanon A, et al. Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City. Burkina Faso Parasit Vectors. 2022;15:478.

    PubMed 

    Google Scholar 

  • Zahouli JB, Koudou BG, Müller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis. 2017;11: e0005751.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Surendran SN, Jayadas TT, Sivabalakrishnan K, Santhirasegaram S, Karvannan K, Weerarathne TC, et al. Development of the major arboviral vector Aedes aegypti in urban drain-water and associated pyrethroid insecticide resistance is a potential global health challenge. Parasit Vectors. 2019;12:337.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadlett M, Nagi SC, Sarkar M, Paine MJ, Weetman D. High concentrations of membrane-fed ivermectin are required for substantial lethal and sublethal impacts on Aedes aegypti. Parasit Vectors. 2021;14:9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Procédures pour tester la résistance aux insecticides chez les moustiques vecteurs du paludisme. Geneva, World Health Organization, 2017.

  • Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.

  • Robert V, Ndiaye E, Rahola N, Le Goff G, Boussès P, Diallo D, et al. Clés dichotomiques illustrées d’identification des femelles et des larves de moustiques (Diptera: Culicidae) du Burkina Faso, Cap-Vert, Gambie, Mali, Mauritanie, Niger, Sénégal et Tchad. Montpellier, IRD. 2022.

  • Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10: e0146021.

    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Endectocide and ectocide products for malaria transmission control: preferred product characteristics. Geneva, World Health Organization; 2022.

  • Dabira ED, Soumare HM, Conteh B, Ceesay F, Ndiath MO, Bradley J, et al. Mass drug administration of ivermectin and dihydroartemisinin–piperaquine against malaria in settings with high coverage of standard control interventions: a cluster-randomised controlled trial in The Gambia. Lancet Infect Dis. 2022;22:519–28.

    CAS 
    PubMed 

    Google Scholar 

  • Foy BD, Some A, Magalhaes T, Gray L, Rao S, Sougue E, et al. Repeat ivermectin mass drug administrations for malaria control II: protocol for a double-blind, cluster-randomized, placebo-controlled trial for the integrated control of malaria. JMIR Res Protoc. 2023;12: e41197.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Soumare HM, Dabira ED, Camara MM, Jadama L, Gaye PM, Kanteh S, et al. Entomological impact of mass administration of ivermectin and dihydroartemisinin-piperaquine in The Gambia: a cluster-randomized controlled trial. Parasit vectors. 2022;15:435.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinrich AP, Pooda SH, Porciani A, Zéla L, Schinzel A, Moiroux N, et al. An ecotoxicological view on malaria vector control with ivermectin-treated cattle. Nat Sustain. 2024;7:724–36.

    Google Scholar 

  • Liebig M, Fernandez ÁA, Blübaum-Gronau E, Boxall A, Brinke M, Carbonell G, et al. Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manag. 2010;6:567–87.

    CAS 
    PubMed 

    Google Scholar 

  • Imbahale SS, Mweresa CK, Takken W, Mukabana WR. Development of environmental tools for anopheline larval control. Parasit Vectors. 2011;4:130.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Derua YA, Malongo BB, Simonsen PE. Effect of ivermectin on the larvae of Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2016;9:131.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deus KM, Saavedra-Rodriguez K, Butters MP, Black WC, Foy BD. The effect of ivermectin in seven strains of Aedes aegypti (Diptera: Culicidae) including a genetically diverse laboratory strain and three permethrin resistant strains. J Med Entomol. 2012;49:356–63.

    CAS 
    PubMed 

    Google Scholar 

  • Dreyer SM, Morin KJ, Vaughan JA. Differential susceptibilities of Anopheles albimanus and Anopheles stephensi mosquitoes to ivermectin. Malar J. 2018;17:148.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobylinski KC, Ubalee R, Ponlawat A, Nitatsukprasert C, Phasomkulsolsil S, Wattanakul T, et al. Ivermectin susceptibility and sporontocidal effect in Greater Mekong Subregion Anopheles. Malar J. 2017;16:280.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balboné M, Soma DD, Namountougou M, Drabo SF, Konaté H, Toe O, et al. Essential oils from five local plants: an alternative larvicide for Anopheles gambiae s.l. (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae) control in Western Burkina Faso. Front Trop Dis. 2022;3:853405.

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34:653–65.

    CAS 
    PubMed 

    Google Scholar 

  • Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11: e0005625.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobylinski KC, Satoto TB, Nurcahyo W, Nugraheni YR, Testamenti VA, Winata IPB, et al. Impact of standard and long-lasting ivermectin formulations in cattle and buffalo on wild Anopheles survival on Sumba Island. Indonesia Sci Rep. 2024;14:29770.

    CAS 
    PubMed 

    Google Scholar 

  • Sagna AB, Zéla L, Ouedraogo COW, Pooda SH, Porciani A, Furnival-Adams J, et al. Ivermectin as a novel malaria control tool: Getting ahead of the resistance curse. Acta Trop. 2023;245: 106973.

    CAS 
    PubMed 

    Google Scholar 

  • Furnival-Adams J, Kiuru C, Sagna AB, Mouline K, Maia M, Chaccour C. Ivermectin resistance mechanisms in ectoparasites: a scoping review. Parasitol Res. 2024;123:221.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Derua YA, Tungu PK, Malima RC, Mwingira V, Kimambo AG, Batengana BM, et al.. Laboratory and semi-field evaluation of the efficacy of Bacillus thuringiensis var. israelensis (Bactivec®) and Bacillus sphaericus (Griselesf®) for control of mosquito vectors in northeastern Tanzania. Curr Res Parasitol Vector Borne Dis. 2022;2:100089.

  • Nampelah B, Chisulumi PS, Yohana R, Kidima W, Kweka EJ. Effect of pyriproxyfen on development and survival of Anopheles gambiae sensu stricto under forested and deforested areas. J Basic Appl Zool. 2022;83:27.

    CAS 

    Google Scholar 

  • Nargus S, Rana S. Efficacy of larvicides against Aedes aegypti larvae in laboratory conditions in Lahore. Pakistan S Asian J Parasitol. 2022;5:146–51.

    Google Scholar 

  • Ochola JB, Mutero CM, Marubu RM, Haller BF, Hassanali A, Lwande W. Mosquitoes larvicidal activity of Ocimum kilimandscharicum oil formulation under laboratory and field-simulated conditions. Insects. 2022;13 203.

  • Okumu FO, Knols BG, Fillinger U. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 2007;6:63.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiuru C, Ominde K, Muturi M, Babu L, Wanjiku C, Chaccour C, et al. Effects of larval exposure to sublethal doses of ivermectin on adult fitness and susceptibility to ivermectin in Anopheles gambiae s.s. Parasit Vectors. 2023;16:293.

  • Alves SN, Serrão JE, Mocelin G, Melo ALd. Effect of ivermectin on the life cycle and larval fat body of Culex quinquefasciatus. Braz Arch Biol Technol. 2004;47:433–39.

  • Forbes A. Ecotoxicology in malaria vector control. Nat Sustain. 2024;7:694–5.

    Google Scholar 

  • Lumaret J-P, Errouissi F, Floate K, Rombke J, Wardhaugh K. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol. 2012;13:1004–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verdú JR, Cortez V, Ortiz AJ, González-Rodríguez E, Martinez-Pinna J, Lumaret J-P, et al. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci Rep. 2015;5:13912.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suarez V, Lifschitz A, Sallovitz J, Lanusse C. Effects of ivermectin and doramectin faecal residues on the invertebrate colonization of cattle dung. J Appl Entomol. 2003;127:481–8.

    CAS 

    Google Scholar 

  • Continue Reading