Floate KD. Endectocide use in cattle and fecal residues: environmental effects in Canada. Can J Vet Res. 2006;70:1–10.
Google Scholar
Ikeda T. [Pharmacological effects of ivermectin, an antiparasitic agent for intestinal strongyloidiasis: its mode of action and clinical efficacy] (in Japanese). Nihon Yakurigaku Zasshi. 2003;122:527–38.
Google Scholar
Campbell WC. Ivermectin, an antiparasitic agent. Med Res Re. 1993;13:61–79.
Google Scholar
Medleau L, Ristic Z, McElveen DR. Daily ivermectin for treatment of generalized demodicosis in dogs. Vet Dermatol. 1996;7:209–12.
Google Scholar
Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008;31:91–8.
Google Scholar
Omura S, Crump A. Ivermectin: panacea for resource-poor communities? Trends Parasitol. 2014;30:445–55.
Google Scholar
Ottesen EA, Hooper PJ, Bradley M, Biswas G. The Global Programme to Eliminate Lymphatic Filariasis: health impact after 8 years. PLoS Negl Trop Dis. 2008;2: e317.
Google Scholar
Panahi Y, Poursaleh Z, Goldust M. The efficacy of topical and oral ivermectin in the treatment of human scabies. Ann Parasitol. 2015;61:11–6.
Google Scholar
Romani L, Whitfeld MJ, Koroivueta J, Kama M, Wand H, Tikoduadua L, et al. Mass drug administration for scabies control in a population with endemic disease. N Engl J Med. 2015;373:2305–13.
Google Scholar
Sangaré AK, Doumbo OK, Raoult D. Management and treatment of human lice. BioMed Res Int. 2016;2016:8962685.
Google Scholar
Crump A. Ivermectin: enigmatic multifaceted “wonder” drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 2017;70:495–505.
Google Scholar
Herd RP, Sams RA, Ashcraft SM. Persistence of ivermectin in plasma and faeces following treatment of cows with ivermectin sustained-release, pour-on or injectable formulations. Int J Parasitol. 1996;26:1087–93.
Google Scholar
Halley BA, Nessel RJ, Lu AYH, Roncalli RA. The environmental safety of ivermectin: an overview. Chemosphere. 1989;18:1565–72.
Google Scholar
Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014;13:417.
Google Scholar
Chaccour C, Lines J, Whitty CJM. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010;202:113–6.
Google Scholar
Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, da Silva IM, et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010;116:119–26.
Google Scholar
Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, et al. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010;9:365.
Google Scholar
Chaccour CJ, Ngha’bi K, Abizanda G, Irigoyen Barrio A, Aldaz A, Okumu F, et al. Targeting cattle for malaria elimination: marked reduction of Anopheles arabiensis survival for over six months using a slow-release ivermectin implant formulation. Parasit Vectors. 2018;11:287.
Google Scholar
Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2015;8:130.
Google Scholar
Pooda HS, Rayaisse J-B, Hien DFdS, Lefèvre T, Yerbanga SR, Bengaly Z, et al. Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria. Malar J. 2015;14 Suppl 1:496.
Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso. West Africa Med Vet Entomol. 2012;26:9–17.
Google Scholar
Ouédraogo WM, Toé KH, Sombié A, Viana M, Bougouma C, Sanon A, et al. Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City. Burkina Faso Parasit Vectors. 2022;15:478.
Google Scholar
Zahouli JB, Koudou BG, Müller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis. 2017;11: e0005751.
Google Scholar
Surendran SN, Jayadas TT, Sivabalakrishnan K, Santhirasegaram S, Karvannan K, Weerarathne TC, et al. Development of the major arboviral vector Aedes aegypti in urban drain-water and associated pyrethroid insecticide resistance is a potential global health challenge. Parasit Vectors. 2019;12:337.
Google Scholar
Hadlett M, Nagi SC, Sarkar M, Paine MJ, Weetman D. High concentrations of membrane-fed ivermectin are required for substantial lethal and sublethal impacts on Aedes aegypti. Parasit Vectors. 2021;14:9.
Google Scholar
WHO. Procédures pour tester la résistance aux insecticides chez les moustiques vecteurs du paludisme. Geneva, World Health Organization, 2017.
Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008;7:163.
Robert V, Ndiaye E, Rahola N, Le Goff G, Boussès P, Diallo D, et al. Clés dichotomiques illustrées d’identification des femelles et des larves de moustiques (Diptera: Culicidae) du Burkina Faso, Cap-Vert, Gambie, Mali, Mauritanie, Niger, Sénégal et Tchad. Montpellier, IRD. 2022.
Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10: e0146021.
Google Scholar
WHO. Endectocide and ectocide products for malaria transmission control: preferred product characteristics. Geneva, World Health Organization; 2022.
Dabira ED, Soumare HM, Conteh B, Ceesay F, Ndiath MO, Bradley J, et al. Mass drug administration of ivermectin and dihydroartemisinin–piperaquine against malaria in settings with high coverage of standard control interventions: a cluster-randomised controlled trial in The Gambia. Lancet Infect Dis. 2022;22:519–28.
Google Scholar
Foy BD, Some A, Magalhaes T, Gray L, Rao S, Sougue E, et al. Repeat ivermectin mass drug administrations for malaria control II: protocol for a double-blind, cluster-randomized, placebo-controlled trial for the integrated control of malaria. JMIR Res Protoc. 2023;12: e41197.
Google Scholar
Soumare HM, Dabira ED, Camara MM, Jadama L, Gaye PM, Kanteh S, et al. Entomological impact of mass administration of ivermectin and dihydroartemisinin-piperaquine in The Gambia: a cluster-randomized controlled trial. Parasit vectors. 2022;15:435.
Google Scholar
Heinrich AP, Pooda SH, Porciani A, Zéla L, Schinzel A, Moiroux N, et al. An ecotoxicological view on malaria vector control with ivermectin-treated cattle. Nat Sustain. 2024;7:724–36.
Liebig M, Fernandez ÁA, Blübaum-Gronau E, Boxall A, Brinke M, Carbonell G, et al. Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manag. 2010;6:567–87.
Google Scholar
Imbahale SS, Mweresa CK, Takken W, Mukabana WR. Development of environmental tools for anopheline larval control. Parasit Vectors. 2011;4:130.
Google Scholar
Derua YA, Malongo BB, Simonsen PE. Effect of ivermectin on the larvae of Anopheles gambiae and Culex quinquefasciatus. Parasit Vectors. 2016;9:131.
Google Scholar
Deus KM, Saavedra-Rodriguez K, Butters MP, Black WC, Foy BD. The effect of ivermectin in seven strains of Aedes aegypti (Diptera: Culicidae) including a genetically diverse laboratory strain and three permethrin resistant strains. J Med Entomol. 2012;49:356–63.
Google Scholar
Dreyer SM, Morin KJ, Vaughan JA. Differential susceptibilities of Anopheles albimanus and Anopheles stephensi mosquitoes to ivermectin. Malar J. 2018;17:148.
Google Scholar
Kobylinski KC, Ubalee R, Ponlawat A, Nitatsukprasert C, Phasomkulsolsil S, Wattanakul T, et al. Ivermectin susceptibility and sporontocidal effect in Greater Mekong Subregion Anopheles. Malar J. 2017;16:280.
Google Scholar
Balboné M, Soma DD, Namountougou M, Drabo SF, Konaté H, Toe O, et al. Essential oils from five local plants: an alternative larvicide for Anopheles gambiae s.l. (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae) control in Western Burkina Faso. Front Trop Dis. 2022;3:853405.
Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34:653–65.
Google Scholar
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11: e0005625.
Google Scholar
Kobylinski KC, Satoto TB, Nurcahyo W, Nugraheni YR, Testamenti VA, Winata IPB, et al. Impact of standard and long-lasting ivermectin formulations in cattle and buffalo on wild Anopheles survival on Sumba Island. Indonesia Sci Rep. 2024;14:29770.
Google Scholar
Sagna AB, Zéla L, Ouedraogo COW, Pooda SH, Porciani A, Furnival-Adams J, et al. Ivermectin as a novel malaria control tool: Getting ahead of the resistance curse. Acta Trop. 2023;245: 106973.
Google Scholar
Furnival-Adams J, Kiuru C, Sagna AB, Mouline K, Maia M, Chaccour C. Ivermectin resistance mechanisms in ectoparasites: a scoping review. Parasitol Res. 2024;123:221.
Google Scholar
Derua YA, Tungu PK, Malima RC, Mwingira V, Kimambo AG, Batengana BM, et al.. Laboratory and semi-field evaluation of the efficacy of Bacillus thuringiensis var. israelensis (Bactivec®) and Bacillus sphaericus (Griselesf®) for control of mosquito vectors in northeastern Tanzania. Curr Res Parasitol Vector Borne Dis. 2022;2:100089.
Nampelah B, Chisulumi PS, Yohana R, Kidima W, Kweka EJ. Effect of pyriproxyfen on development and survival of Anopheles gambiae sensu stricto under forested and deforested areas. J Basic Appl Zool. 2022;83:27.
Google Scholar
Nargus S, Rana S. Efficacy of larvicides against Aedes aegypti larvae in laboratory conditions in Lahore. Pakistan S Asian J Parasitol. 2022;5:146–51.
Ochola JB, Mutero CM, Marubu RM, Haller BF, Hassanali A, Lwande W. Mosquitoes larvicidal activity of Ocimum kilimandscharicum oil formulation under laboratory and field-simulated conditions. Insects. 2022;13 203.
Okumu FO, Knols BG, Fillinger U. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 2007;6:63.
Google Scholar
Kiuru C, Ominde K, Muturi M, Babu L, Wanjiku C, Chaccour C, et al. Effects of larval exposure to sublethal doses of ivermectin on adult fitness and susceptibility to ivermectin in Anopheles gambiae s.s. Parasit Vectors. 2023;16:293.
Alves SN, Serrão JE, Mocelin G, Melo ALd. Effect of ivermectin on the life cycle and larval fat body of Culex quinquefasciatus. Braz Arch Biol Technol. 2004;47:433–39.
Forbes A. Ecotoxicology in malaria vector control. Nat Sustain. 2024;7:694–5.
Lumaret J-P, Errouissi F, Floate K, Rombke J, Wardhaugh K. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol. 2012;13:1004–60.
Google Scholar
Verdú JR, Cortez V, Ortiz AJ, González-Rodríguez E, Martinez-Pinna J, Lumaret J-P, et al. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci Rep. 2015;5:13912.
Google Scholar
Suarez V, Lifschitz A, Sallovitz J, Lanusse C. Effects of ivermectin and doramectin faecal residues on the invertebrate colonization of cattle dung. J Appl Entomol. 2003;127:481–8.
Google Scholar