Increased prevalence of cardio-cerebrovascular risk factors during the COVID-19 pandemic lockdown: a large, single center, cross-sectional study | BMC Medicine

  • Chen J. Pathogenicity and transmissibility of 2019-nCoV-a quick overview and comparison with other emerging viruses. Microbes Infect. 2020;22(2):69–71.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Planinšec J, Matejek Č, Pišot S, Pišot R, Šimunič B. Consequences of COVID-19 lockdown restrictions on children physical activity-a Slovenian study. Front Public Health. 2022;10:843448.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shanmugam H, Di Ciaula A, Di Palo DM, Molina-Molina E, Garruti G, Faienza MF, et al. Multiplying effects of COVID-19 lockdown on metabolic risk and fatty liver. Eur J Clin Invest. 2021;51(7):e13597.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas AM, Kamel MM. Dietary habits in adults during quarantine in the context of COVID-19 pandemic. Obes Med. 2020;19:100254.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao D, Liu J, Xie W, Qi Y. Cardiovascular risk assessment: a global perspective. Nat Rev Cardiol. 2015;12(5):301–11.

    PubMed 

    Google Scholar 

  • Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, et al. Hypertension Nat Rev Dis Primers. 2018;4:18014.

    PubMed 

    Google Scholar 

  • Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–95.

    PubMed 

    Google Scholar 

  • Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013;109(Suppl 1):S1-34.

    PubMed 

    Google Scholar 

  • Dotsenko O, Chaturvedi N, Thom SA, Wright AR, Mayet J, Shore A, et al. Platelet and leukocyte activation, atherosclerosis and inflammation in European and South Asian men. J Thromb Haemost. 2007;5(10):2036–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haybar H, Pezeshki SMS, Saki N. Evaluation of complete blood count parameters in cardiovascular diseases: an early indicator of prognosis? Exp Mol Pathol. 2019;110:104267.

    CAS 
    PubMed 

    Google Scholar 

  • Kurtul A, Ornek E. Platelet to lymphocyte ratio in cardiovascular diseases: a systematic review. Angiology. 2019;70(9):802–18.

    CAS 
    PubMed 

    Google Scholar 

  • Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21(1):68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304.

    PubMed 

    Google Scholar 

  • Kheirollahi A, Teimouri M, Karimi M, Vatannejad A, Moradi N, Borumandnia N, et al. Evaluation of lipid ratios and triglyceride-glucose index as risk markers of insulin resistance in Iranian polycystic ovary syndrome women. Lipids Health Dis. 2020;19(1):235.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rafiee H, Mohammadifard N, Nouri F, Alavi Tabatabaei G, Najafian J, Sadeghi M, et al. Association of triglyceride glucose index with cardiovascular events: insights from the Isfahan Cohort Study (ICS). Eur J Med Res. 2024;29(1):135.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng Y, Fang Z, Zhang X, Wen Y, Lu J, He S, et al. Association between triglyceride glucose-body mass index and cardiovascular outcomes in patients undergoing percutaneous coronary intervention: a retrospective study. Cardiovasc Diabetol. 2023;22(1):75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang K, Wang X, Hu J, Zhang Y, Cheng L, Qi X, et al. The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003–2018. Cardiovasc Diabetol. 2024;23(1):8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang X, Li K, Wen J, Yang C, Li Y, Xu G, et al. Association of the triglyceride glucose-body mass index with the extent of coronary artery disease in patients with acute coronary syndromes. Cardiovasc Diabetol. 2024;23(1):24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrante G, Fazzari F, Cozzi O, Maurina M, Bragato R, D’Orazio F, et al. Risk factors for myocardial injury and death in patients with COVID-19: insights from a cohort study with chest computed tomography. Cardiovasc Res. 2020;116(14):2239–46.

    CAS 
    PubMed 

    Google Scholar 

  • Liu Z, Yin X, Mai H, Li G, Lin Z, Jie W, et al. SCD rs41290540 single-nucleotide polymorphism modifies miR-498 binding and is associated with a decreased risk of coronary artery disease. Mol Genet Genomic Med. 2020;8(3):e1136.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weston LJ, Kim H, Talegawkar SA, Tucker KL, Correa A, Rebholz CM. Plant-based diets and incident cardiovascular disease and all-cause mortality in African Americans: a cohort study. PLoS Med. 2022;19(1):e1003863.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu CF, Chien LW. Triglyceride glucose index and poor sleep patterns in non-diabetic adults: evidence from NHANES 2005–2016. Front Nutr. 2023;10:1051667.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue J, Ma D, Jiang J, Liu Y. Diagnostic and prognostic value of immune/inflammation biomarkers for venous thromboembolism: is it reliable for clinical practice? J Inflamm Res. 2021;14:5059–77.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kosidło JW, Wolszczak-Biedrzycka B, Matowicka-Karna J, Dymicka-Piekarska V, Dorf J. Clinical significance and diagnostic utility of NLR, LMR, PLR and SII in the course of COVID-19: a literature review. J Inflamm Res. 2023;16:539–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Banerjee A, Chen S, Pasea L, Lai AG, Katsoulis M, Denaxas S, et al. Excess deaths in people with cardiovascular diseases during the COVID-19 pandemic. Eur J Prev Cardiol. 2021;28(14):1599–609.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Straub RH. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat Rev Rheumatol. 2017;13(12):743–51.

    CAS 
    PubMed 

    Google Scholar 

  • Ding D, Cheng M, Del Pozo CB, Lin T, Sun S, Zhang L, et al. How COVID-19 lockdown and reopening affected daily steps: evidence based on 164,630 person-days of prospectively collected data from Shanghai, China. Int J Behav Nutr Phys Act. 2021;18(1):40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, et al. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013;98(6):2604–12.

    CAS 
    PubMed 

    Google Scholar 

  • Fedewa MV, Hathaway ED, Ward-Ritacco CL. Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials. Br J Sports Med. 2017;51(8):670–6.

    PubMed 

    Google Scholar 

  • Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15(12):731–43.

    CAS 
    PubMed 

    Google Scholar 

  • Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda). 2005;20:260–70.

    CAS 
    PubMed 

    Google Scholar 

  • Wojtaszewski JF, Richter EA. Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle. Essays Biochem. 2006;42:31–46.

    CAS 
    PubMed 

    Google Scholar 

  • Błachnio-Zabielska A, Zabielski P, Baranowski M, Gorski J. Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity. Lipids. 2011;46(3):229–38.

    PubMed 

    Google Scholar 

  • Caponi PW, Lehnen AM, Pinto GH, Borges J, Markoski M, Machado UF, et al. Aerobic exercise training induces metabolic benefits in rats with metabolic syndrome independent of dietary changes. Clinics (Sao Paulo). 2013;68(7):1010–7.

    PubMed 

    Google Scholar 

  • Zhao A, Li Z, Ke Y, Huo S, Ma Y, Zhang Y, et al. Dietary diversity among Chinese residents during the COVID-19 outbreak and its associated factors. Nutrients. 2020;12(6):1699.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr. 2008;87(5):1188–93.

    CAS 
    PubMed 

    Google Scholar 

  • Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9):526–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nielsen FH. Effects of magnesium depletion on inflammation in chronic disease. Curr Opin Clin Nutr Metab Care. 2014;17(6):525–30.

    CAS 
    PubMed 

    Google Scholar 

  • Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277–85.

    CAS 
    PubMed 

    Google Scholar 

  • Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans. 2017;45(5):1105–15.

    CAS 
    PubMed 

    Google Scholar 

  • Fardet A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct. 2016;7(5):2338–46.

    CAS 
    PubMed 

    Google Scholar 

  • Blaak EE, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13(10):923–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pierce M, Hope H, Ford T, Hatch S, Hotopf M, John A, et al. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry. 2020;7(10):883–92.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prati G, Mancini AD. The psychological impact of COVID-19 pandemic lockdowns: a review and meta-analysis of longitudinal studies and natural experiments. Psychol Med. 2021;51(2):201–11.

    PubMed 

    Google Scholar 

  • Richter D, Riedel-Heller S, Zürcher SJ. Mental health problems in the general population during and after the first lockdown phase due to the SARS-CoV-2 pandemic: rapid review of multi-wave studies. Epidemiol Psychiatr Sci. 2021;30:e27.

    PubMed 

    Google Scholar 

  • Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    CAS 
    PubMed 

    Google Scholar 

  • Zitvogel L, Pietrocola F, Kroemer G. Nutrition, inflammation and cancer. Nat Immunol. 2017;18(8):843–50.

    CAS 
    PubMed 

    Google Scholar 

  • Razzoli M, Nyuyki-Dufe K, Gurney A, Erickson C, McCallum J, Spielman N, et al. Social stress shortens lifespan in mice. Aging Cell. 2018;17(4):e12778.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodall T, Ramage M, LaBruyere JT, McLean W, Tak CR. Telemedicine services during COVID-19: considerations for medically underserved populations. J Rural Health. 2021;37(1):231–4.

    PubMed 

    Google Scholar 

  • Temesgen ZM, DeSimone DC, Mahmood M, Libertin CR, Varatharaj Palraj BR, Berbari EF. Health care after the COVID-19 pandemic and the influence of telemedicine. Mayo Clin Proc. 2020;95(9s):S66–8.

    CAS 
    PubMed 

    Google Scholar 

  • Bhatla A, Ding J, Mhaimeed O, Spaulding EM, Commodore-Mensah Y, Plante TB, et al. Patterns of telehealth visits after the COVID-19 pandemic among individuals with or at risk for cardiovascular disease in the United States. J Am Heart Assoc. 2024;13(17):e036475.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowie MR, Lam CSP. Remote monitoring and digital health tools in CVD management. Nat Rev Cardiol. 2021;18(7):457–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naylor-Wardle J, Rowland B, Kunadian V. Socioeconomic status and cardiovascular health in the COVID-19 pandemic. Heart. 2021;107(5):358–65.

    CAS 
    PubMed 

    Google Scholar 

  • Maung KK, Marques-Vidal P. Impact of the COVID-19 pandemic on CVD prevention between different socioeconomic groups in Switzerland. Open Heart. 2023;10(2):e002368.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading