Gasser RB, von Samson-Himmelstjerna G. Haemonchus contortus and Haemonchosis – Past, Present and Future Trends. Adv Parasitol. 2016; 93 – 1st Edition. Print Book & E-Book. ISBN 9780128103951.
Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Primers. 2016;2:16088. https://doi.org/10.1038/nrdp.2016.88.
Google Scholar
Bartsch SM, Hotez PJ, Asti L, Zapf KM, Bottazzi ME, Diemert DJ, et al. The global economic and health burden of human hookworm infection. PLoS Negl Trop Dis. 2016;10:e0004922. https://doi.org/10.1371/journal.pntd.0004922.
Google Scholar
Charlier J, Bartley DJ, Sotiraki S, Martinez-Valladares M, Claerebout E, von Samson-Himmelstjerna G, et al. Anthelmintic resistance in ruminants: challenges and solutions. Adv Parasitol. 2022;115:171–227. https://doi.org/10.1016/bs.apar.2021.12.002.
Google Scholar
Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: History, mechanisms and diagnosis. Adv Parasitol. 2016;93:397–428. https://doi.org/10.1016/bs.apar.2016.02.012.
Google Scholar
Wang T, Gasser RB. Prospects of using high-throughput proteomics to underpin the discovery of animal host-nematode interactions. Pathogens. 2021;10:825. https://doi.org/10.3390/pathogens10070825.
Google Scholar
Cui J, Liu RD, Wang L, Zhang X, Jiang P, Liu MY, et al. Proteomic analysis of surface proteins of Trichinella spiralis muscle larvae by two-dimensional gel electrophoresis and mass spectrometry. Parasit Vectors. 2013;6:355. https://doi.org/10.1186/1756-3305-6-355.
Google Scholar
Wang T, Van Steendam K, Dhaenens M, Vlaminck J, Deforce D, Jex AR, et al. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases. PLoS Negl Trop Dis. 2013;7:e2467. https://doi.org/10.1371/journal.pntd.0002467.
Google Scholar
Chehayeb JF, Robertson AP, Martin RJ, Geary TG. Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis. 2014;8:e2939. https://doi.org/10.1371/journal.pntd.0002939.
Google Scholar
Liu RD, Cui J, Liu XL, Jiang P, Sun GG, Zhang X, et al. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae. Acta Trop. 2015;150:79–86. https://doi.org/10.1016/j.actatropica.2015.07.002.
Google Scholar
Zamanian M, Fraser LM, Agbedanu PN, Harischandra H, Moorhead AR, Day TA, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl Trop Dis. 2015;9:e0004069. https://doi.org/10.1371/journal.pntd.0004069.
Google Scholar
Sperotto RL, Kremer FS, Aires Berne ME, Costa de Avila LF, Silva Pinto L, Monteiro KM, et al. Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins. Mol Biochem Parasitol. 2017;211:39–47 https://doi.org/10.1016/j.molbiopara.2016.09.002.
Google Scholar
Tzelos T, Matthews JB, Buck AH, Simbari F, Frew D, Inglis NF, et al. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta. Vet Parasitol. 2016;221:84–92. https://doi.org/10.1016/j.vetpar.2016.03.008.
Google Scholar
Sotillo J, Sanchez-Flores A, Cantacessi C, Harcus Y, Pickering D, Bouchery T, et al. Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Mol Cell Proteomics. 2014;13:2736–51. https://doi.org/10.1074/mcp.M114.038950.
Google Scholar
Eichenberger RM, Talukder MH, Field MA, Wangchuk P, Giacomin P, Loukas A, et al. Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host-parasite communication. J Extracell Vesicles. 2018;7:1428004. https://doi.org/10.1080/20013078.2018.1428004.
Google Scholar
Logan J, Pearson MS, Manda SS, Choi YJ, Field M, Eichenberger RM, et al. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl Trop Dis. 2020;14:e0008237. https://doi.org/10.1371/journal.pntd.0008237.
Google Scholar
Tritten L, Tam M, Vargas M, Jardim A, Stevenson MM, Keiser J, et al. Excretory/secretory products from the gastrointestinal nematode Trichuris muris. Exp Parasitol. 2017;178:30–6. https://doi.org/10.1016/j.exppara.2017.05.003.
Google Scholar
Wang T, Koukoulis TF, Vella LJ, Su H, Purnianto A, Nie S, et al. The proteome and lipidome of extracellular vesicles from Haemonchus contortus to underpin explorations of host-parasite cross-talk. Int J Mol Sci. 2023;24:10955. https://doi.org/10.3390/ijms241310955.
Google Scholar
Morris CP, Bennuru S, Kropp LE, Zweben JA, Meng Z, Taylor RT, et al. A proteomic analysis of the body wall, digestive tract, and reproductive tract of Brugia malayi. PLoS Negl Trop Dis. 2015;9:e0004054. https://doi.org/10.1371/journal.pntd.0004054.
Google Scholar
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, et al. Stage-specific proteomes from Onchocerca ochengi, sister species of the human river blindness parasite, uncover adaptations to a nodular lifestyle. Mol Cell Proteomics. 2016;15:2554–75. https://doi.org/10.1074/mcp.M115.055640.
Google Scholar
Wang T, Ma G, Ang CS, Korhonen PK, Xu R, Nie S, et al. Somatic proteome of Haemonchus contortus. Int J Parasitol. 2019;49:311–20. https://doi.org/10.1016/j.ijpara.2018.12.003.
Google Scholar
Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14:R89. https://doi.org/10.1186/gb-2013-14-8-r89.
Google Scholar
Zheng Y, Young ND, Campos TL, Korhonen PK, Wang T, Sumanam SB, et al. Chromosome-contiguous genome for the Haecon-5 strain of Haemonchus contortus reveals marked genetic variability and enables the discovery of essential gene candidates. Int J Parasitol. 2024;54:705–15. https://doi.org/10.1016/j.ijpara.2024.08.003.
Google Scholar
Mes TH, Eysker M, Ploeger HW. A simple, robust and semi-automated parasite egg isolation protocol. Nat Protoc. 2007;2:486–9. https://doi.org/10.1038/nprot.2007.56.
Google Scholar
Nikolaou S, Hartman D, Presidente PJ, Newton SE, Gasser RB. HcSTK, a Caenorhabditis elegans PAR-1 homologue from the parasitic nematode, Haemonchus contortus. Int J Parasitol. 2002;32:749–58.
Google Scholar
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40. https://doi.org/10.1038/nmeth.3901.
Google Scholar
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50. https://doi.org/10.1093/nar/gky1106.
Google Scholar
Garesse R, Castell JV, Vallejo CG, Marco R. A fluorescamine-based sensitive method for the assay of proteinases, capable of detecting the initial cleavage steps of a protein. Eur J Biochem. 1979;99:253–9. https://doi.org/10.1111/j.1432-1033.1979.tb13252.x.
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20. https://doi.org/10.1093/nar/gki442.
Google Scholar
Khan A, Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics. 2017;18:287. https://doi.org/10.1186/s12859-017-1708-7.
Google Scholar
Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9. https://doi.org/10.1093/molbev/msab293.
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62. https://doi.org/10.1093/nar/gkv1070.
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. Interproscan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Google Scholar
Powell-Coffman JA. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab. 2010;21:435–40. https://doi.org/10.1016/j.tem.2010.02.006.
Google Scholar
Goto M, Amino H, Nakajima M, Tsuji N, Sakamoto K, Kita K. Cloning and characterization of hypoxia-inducible factor-1 subunits from Ascaris suum – a parasitic nematode highly adapted to changes of oxygen conditions during its life cycle. Gene. 2013;516:39–47. https://doi.org/10.1016/j.gene.2012.12.025.
Google Scholar
Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol. 2003;19:417–23. https://doi.org/10.1016/S1471-4922(03)00189-2.
Google Scholar
Perner J, Gasser RB, Oliveira PL, Kopáček P. Haem biology in metazoan parasites – ‘the bright side of haem.’ Trends Parasitol. 2019;35:213–25. https://doi.org/10.1016/j.pt.2019.01.001.
Google Scholar
Meier L, Torgerson PR, Hertzberg H. Vaccination of goats against Haemonchus contortus with the gut membrane proteins H11/H-gal-GP. Vet Parasitol. 2016;229:15–21. https://doi.org/10.1016/j.vetpar.2016.08.024.
Google Scholar
Ekoja SE, Smith WD. Antibodies from sheep immunized against Haemonchus contortus with H-gal-GP inhibit the haemoglobinase activity of this protease complex. Parasite Immunol. 2010;32:731–8. https://doi.org/10.1111/j.1365-3024.2010.01242.x.
Google Scholar
Adegnika AA, de Vries SG, Zinsou FJ, Honkepehedji YJ, Dejon Agobe JC, Vodonou KG, et al. Safety and immunogenicity of co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in Gabonese adults: a randomised, controlled, double-blind, phase 1 dose-escalation trial. Lancet Infect Dis. 2021;21:275–85. https://doi.org/10.1016/S1473-3099(20)30288-7.
Google Scholar