Comprehensive developmental somatic proteome atlas of Haemonchus contortus underpinned by a chromosome-scale genome and deep tandem mass spectrometry | Parasites & Vectors

  • Gasser RB, von Samson-Himmelstjerna G. Haemonchus contortus and Haemonchosis – Past, Present and Future Trends. Adv Parasitol. 2016; 93 – 1st Edition. Print Book & E-Book. ISBN 9780128103951.

  • Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Primers. 2016;2:16088. https://doi.org/10.1038/nrdp.2016.88.

    Article 
    PubMed 

    Google Scholar 

  • Bartsch SM, Hotez PJ, Asti L, Zapf KM, Bottazzi ME, Diemert DJ, et al. The global economic and health burden of human hookworm infection. PLoS Negl Trop Dis. 2016;10:e0004922. https://doi.org/10.1371/journal.pntd.0004922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlier J, Bartley DJ, Sotiraki S, Martinez-Valladares M, Claerebout E, von Samson-Himmelstjerna G, et al. Anthelmintic resistance in ruminants: challenges and solutions. Adv Parasitol. 2022;115:171–227. https://doi.org/10.1016/bs.apar.2021.12.002.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: History, mechanisms and diagnosis. Adv Parasitol. 2016;93:397–428. https://doi.org/10.1016/bs.apar.2016.02.012.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang T, Gasser RB. Prospects of using high-throughput proteomics to underpin the discovery of animal host-nematode interactions. Pathogens. 2021;10:825. https://doi.org/10.3390/pathogens10070825.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui J, Liu RD, Wang L, Zhang X, Jiang P, Liu MY, et al. Proteomic analysis of surface proteins of Trichinella spiralis muscle larvae by two-dimensional gel electrophoresis and mass spectrometry. Parasit Vectors. 2013;6:355. https://doi.org/10.1186/1756-3305-6-355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang T, Van Steendam K, Dhaenens M, Vlaminck J, Deforce D, Jex AR, et al. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases. PLoS Negl Trop Dis. 2013;7:e2467. https://doi.org/10.1371/journal.pntd.0002467.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chehayeb JF, Robertson AP, Martin RJ, Geary TG. Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis. 2014;8:e2939. https://doi.org/10.1371/journal.pntd.0002939.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu RD, Cui J, Liu XL, Jiang P, Sun GG, Zhang X, et al. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae. Acta Trop. 2015;150:79–86. https://doi.org/10.1016/j.actatropica.2015.07.002.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zamanian M, Fraser LM, Agbedanu PN, Harischandra H, Moorhead AR, Day TA, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl Trop Dis. 2015;9:e0004069. https://doi.org/10.1371/journal.pntd.0004069.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sperotto RL, Kremer FS, Aires Berne ME, Costa de Avila LF, Silva Pinto L, Monteiro KM, et al. Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins. Mol Biochem Parasitol. 2017;211:39–47 https://doi.org/10.1016/j.molbiopara.2016.09.002.

    Article 
    PubMed 

    Google Scholar 

  • Tzelos T, Matthews JB, Buck AH, Simbari F, Frew D, Inglis NF, et al. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta. Vet Parasitol. 2016;221:84–92. https://doi.org/10.1016/j.vetpar.2016.03.008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sotillo J, Sanchez-Flores A, Cantacessi C, Harcus Y, Pickering D, Bouchery T, et al. Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Mol Cell Proteomics. 2014;13:2736–51. https://doi.org/10.1074/mcp.M114.038950.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eichenberger RM, Talukder MH, Field MA, Wangchuk P, Giacomin P, Loukas A, et al. Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host-parasite communication. J Extracell Vesicles. 2018;7:1428004. https://doi.org/10.1080/20013078.2018.1428004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logan J, Pearson MS, Manda SS, Choi YJ, Field M, Eichenberger RM, et al. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl Trop Dis. 2020;14:e0008237. https://doi.org/10.1371/journal.pntd.0008237.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tritten L, Tam M, Vargas M, Jardim A, Stevenson MM, Keiser J, et al. Excretory/secretory products from the gastrointestinal nematode Trichuris muris. Exp Parasitol. 2017;178:30–6. https://doi.org/10.1016/j.exppara.2017.05.003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang T, Koukoulis TF, Vella LJ, Su H, Purnianto A, Nie S, et al. The proteome and lipidome of extracellular vesicles from Haemonchus contortus to underpin explorations of host-parasite cross-talk. Int J Mol Sci. 2023;24:10955. https://doi.org/10.3390/ijms241310955.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris CP, Bennuru S, Kropp LE, Zweben JA, Meng Z, Taylor RT, et al. A proteomic analysis of the body wall, digestive tract, and reproductive tract of Brugia malayi. PLoS Negl Trop Dis. 2015;9:e0004054. https://doi.org/10.1371/journal.pntd.0004054.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, et al. Stage-specific proteomes from Onchocerca ochengi, sister species of the human river blindness parasite, uncover adaptations to a nodular lifestyle. Mol Cell Proteomics. 2016;15:2554–75. https://doi.org/10.1074/mcp.M115.055640.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang T, Ma G, Ang CS, Korhonen PK, Xu R, Nie S, et al. Somatic proteome of Haemonchus contortus. Int J Parasitol. 2019;49:311–20. https://doi.org/10.1016/j.ijpara.2018.12.003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14:R89. https://doi.org/10.1186/gb-2013-14-8-r89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng Y, Young ND, Campos TL, Korhonen PK, Wang T, Sumanam SB, et al. Chromosome-contiguous genome for the Haecon-5 strain of Haemonchus contortus reveals marked genetic variability and enables the discovery of essential gene candidates. Int J Parasitol. 2024;54:705–15. https://doi.org/10.1016/j.ijpara.2024.08.003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mes TH, Eysker M, Ploeger HW. A simple, robust and semi-automated parasite egg isolation protocol. Nat Protoc. 2007;2:486–9. https://doi.org/10.1038/nprot.2007.56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nikolaou S, Hartman D, Presidente PJ, Newton SE, Gasser RB. HcSTK, a Caenorhabditis elegans PAR-1 homologue from the parasitic nematode, Haemonchus contortus. Int J Parasitol. 2002;32:749–58.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40. https://doi.org/10.1038/nmeth.3901.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50. https://doi.org/10.1093/nar/gky1106.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garesse R, Castell JV, Vallejo CG, Marco R. A fluorescamine-based sensitive method for the assay of proteinases, capable of detecting the initial cleavage steps of a protein. Eur J Biochem. 1979;99:253–9. https://doi.org/10.1111/j.1432-1033.1979.tb13252.x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20. https://doi.org/10.1093/nar/gki442.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan A, Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics. 2017;18:287. https://doi.org/10.1186/s12859-017-1708-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9. https://doi.org/10.1093/molbev/msab293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62. https://doi.org/10.1093/nar/gkv1070.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202. https://doi.org/10.1016/j.molp.2020.06.009.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. Interproscan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. https://doi.org/10.1093/bioinformatics/btu031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell-Coffman JA. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab. 2010;21:435–40. https://doi.org/10.1016/j.tem.2010.02.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goto M, Amino H, Nakajima M, Tsuji N, Sakamoto K, Kita K. Cloning and characterization of hypoxia-inducible factor-1 subunits from Ascaris suum – a parasitic nematode highly adapted to changes of oxygen conditions during its life cycle. Gene. 2013;516:39–47. https://doi.org/10.1016/j.gene.2012.12.025.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol. 2003;19:417–23. https://doi.org/10.1016/S1471-4922(03)00189-2.

    Article 
    PubMed 

    Google Scholar 

  • Perner J, Gasser RB, Oliveira PL, Kopáček P. Haem biology in metazoan parasites – ‘the bright side of haem.’ Trends Parasitol. 2019;35:213–25. https://doi.org/10.1016/j.pt.2019.01.001.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meier L, Torgerson PR, Hertzberg H. Vaccination of goats against Haemonchus contortus with the gut membrane proteins H11/H-gal-GP. Vet Parasitol. 2016;229:15–21. https://doi.org/10.1016/j.vetpar.2016.08.024.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ekoja SE, Smith WD. Antibodies from sheep immunized against Haemonchus contortus with H-gal-GP inhibit the haemoglobinase activity of this protease complex. Parasite Immunol. 2010;32:731–8. https://doi.org/10.1111/j.1365-3024.2010.01242.x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adegnika AA, de Vries SG, Zinsou FJ, Honkepehedji YJ, Dejon Agobe JC, Vodonou KG, et al. Safety and immunogenicity of co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in Gabonese adults: a randomised, controlled, double-blind, phase 1 dose-escalation trial. Lancet Infect Dis. 2021;21:275–85. https://doi.org/10.1016/S1473-3099(20)30288-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading