Microbiome diversity in mosquitoes and sand flies: implications for vector competence | Parasites & Vectors

  • WHO. Global vector control response 2017–2030. https://www.who.int/publications/i/item/9789241512978. Accessed 22 Jun 2025.

  • de Souza WM, Weaver SC. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol. 2024;22:476–91.

    Article 
    PubMed 

    Google Scholar 

  • CDC. Malaria’s Impact Worldwide. 2024. https://www.cdc.gov/malaria/php/impact/index.html. Accessed 12 Jan 2025.

  • Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines. 2021;9:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Rift Valley fever. 2024. https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever. Accessed 12 Jan 2025.

  • Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-transmitted diseases: mechanisms, impact, and future control strategies using Wolbachia. Viruses. 2024;16:1134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telleria EL, Martins-da-Silva A, Tempone AJ, Traub-Csekö YM. Leishmania, microbiota and sand fly immunity. Parasitology. 2018;145:1336–53.

    Article 
    PubMed 

    Google Scholar 

  • Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Medical Vet Entomology. 2013;27:123–47.

    Article 
    CAS 

    Google Scholar 

  • Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro Surveill. 2010;15:19507.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhatt PN, Rodrigues FM. Chandipura: a new arbovirus isolated in India from patients with febrile illness. Indian J Med Res. 1967;55:1295–305.

    CAS 
    PubMed 

    Google Scholar 

  • Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000;14:181–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, et al. Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol. 2003;17:417–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • White NJ. Antimalarial drug resistance. J Clin Invest. 2004;113:1084–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar G, Baharia R, Singh K, Gupta SK, Joy S, Sharma A, et al. Addressing challenges in vector control: a review of current strategies and the imperative for novel tools in India’s combat against vector-borne diseases. BMJ Public Health. 2024;2: e000342.

  • Hassan MM, Widaa SO, Osman OM, Numiary MSM, Ibrahim MA, Abushama HM. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan. Parasit Vectors. 2012;5:46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhiman RC, Yadav RS. Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty. 2016;05:1–10.

    Article 

    Google Scholar 

  • Gupta A, Nair S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020;11:1357.

  • Wu VY, Chen B, Christofferson R, Ebel G, Fagre AC, Gallichotte EN, et al. A minimum data standard for vector competence experiments. Sci Data. 2022;9:634.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang J, Gao L, Aksoy S. Microbiota in disease-transmitting vectors. Nat Rev Microbiol. 2023;21:604–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses. 2014;6:4294–313.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332:855–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xi Z, Khoo CCH, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310:326–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens. Curr Opinion in Insect Sci. 2014;3:6–13.

    Article 

    Google Scholar 

  • Joyce JD, Nogueira JR, Bales AA, Pittman KE, Anderson JR. Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2011;48:389–94.

    Article 
    PubMed 

    Google Scholar 

  • Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21:568–72.

    Article 
    PubMed 

    Google Scholar 

  • Hegde S, Nilyanimit P, Kozlova E, Anderson ER, Narra HP, Sahni SK, et al. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2019;13:e0007883.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stathopoulos S, Neafsey DE, Lawniczak MKN, Muskavitch MAT, Christophides GK. Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens. PLoS Pathog. 2014;10:e1003897.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep. 2020;10:19135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muturi EJ, Lagos-Kutz D, Dunlap C, Ramirez JL, Rooney AP, Hartman GL, et al. Mosquito microbiota cluster by host sampling location. Parasit Vectors. 2018;11:468.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, et al. Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front Microbiol. 2017;8:526.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kieran TJ, Arnold KMH, Thomas JC, Varian CP, Saldaña A, Calzada JE, et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit Vectors. 2019;12:504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Díaz-Sánchez S, Hernández-Jarguín A, Torina A, Fernández de Mera IG, Estrada-Peña A, Villar M, et al. Biotic and abiotic factors shape the microbiota of wild-caught populations of the arbovirus vector Culicoides imicola. Insect Mol Bio. 2018;27:847–61.

    Article 

    Google Scholar 

  • Kang X, Wang Y, Li S, Sun X, Lu X, Rajaofera MJN, et al. Comparative analysis of the gut microbiota of adult mosquitoes from eight locations in Hainan. China Front Cell Infect Microbiol. 2020;10:596750.

    Article 
    PubMed 

    Google Scholar 

  • Lee J-H, Lee H-I, Kwon H-W. Geographical characteristics of Culex tritaeniorhynchus and Culex orientalis microbiomes in Korea. Insects. 2024;15:201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Otani S, Lucati F, Eberhardt R, Møller FD, Caner J, Bakran-Lebl K, et al. Mosquito-borne bacterial communities are shaped by their insect host species, geography and developmental stage. 2025.

  • Karimian F, Koosha M, Choubdar N, Oshaghi MA. Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLoS Negl Trop Dis. 2022;16:e0010609.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabbabi A, Mizushima D, Yamamoto DS, Zhioua E, Kato H. Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLoS Negl Trop Dis. 2024;18:e0012458.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv. 2017;3:e1700585.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS ONE. 2012;7:e40401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saraiva RG, Fang J, Kang S, Angleró-Rodríguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis. 2018;12:e0006443.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun X, Wang Y, Yuan F, Zhang Y, Kang X, Sun J, et al. Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Nat Commun. 2024;15:8221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16:2980–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noden BH, Vaughan JA, Pumpuni CB, Beier JC. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Parasitol Int. 2011;60:440–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louradour I, Monteiro CC, Inbar E, Ghosh K, Merkhofer R, Lawyer P, et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol. 2017;19:12755.

  • Baral S, Gautam I, Singh A, Chaudhary R, Shrestha P, Tuladhar R. Microbiota diversity associated with midgut and salivary gland of Aedes aegypti and Aedes albopictus. Tribhuvan Univer J Microbiol. 2023;10:105–15.

    Article 

    Google Scholar 

  • Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, et al. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol. 2023;14:1157613.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma E, Zhu Y, Liu Z, Wei T, Wang P, Cheng G. Interaction of viruses with the insect intestine. Annu Rev Virol. 2021;8:115–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strand MR. Composition and functional roles of the gut microbiota in mosquitoes. Curr Opin Insect Sci. 2018;28:59–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mancini MV, Damiani C, Accoti A, Tallarita M, Nunzi E, Cappelli A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 2018;18:126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma P, Sharma S, Maurya RK, De Das T, Thomas T, Lata S, et al. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasit Vectors. 2014;7:235.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tchioffo MT, Boissière A, Abate L, Nsango SE, Bayibéki AN, Awono-Ambéné PH, et al. Dynamics of bacterial community composition in the malaria mosquito’s Epithelia. Front Microbiol. 2016;6:1500.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Díaz S, Camargo C, Avila FW. Characterization of the reproductive tract bacterial microbiota of virgin, mated, and blood-fed Aedes aegypti and Aedes albopictus females. Parasit Vectors. 2021;14:592.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P, et al. The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. Environ Microbiol. 2011;13:911–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabiré RK, et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers. Sci Rep. 2016;6:24207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dada N, Lol JC, Benedict AC, López F, Sheth M, Dzuris N, et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. ISME J. 2019;13:2447–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • dos Santos NAC, de Carvalho VR, Souza-Neto JA, Alonso DP, Ribolla PEM, Medeiros JF, et al. Bacterial microbiota from lab-reared and field-captured Anopheles darlingi midgut and salivary gland. Microorganisms. 2023;11:1145.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berhanu A, Abera A, Nega D, Mekasha S, Fentaw S, Assefa A, et al. Isolation and identification of microflora from the midgut and salivary glands of Anopheles species in malaria endemic areas of Ethiopia. BMC Microbiol. 2019;19:85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salgado JFM, Premkrishnan BNV, Oliveira EL, Vettath VK, Goh FG, Hou X, et al. The dynamics of the midgut microbiome in Aedes aegypti during digestion reveal putative symbionts. PNAS Nexus. 2024;3:317.

    Article 

    Google Scholar 

  • Wang X, Liu T, Wu Y, Zhong D, Zhou G, Su X, et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol Ecol. 2018;27:2972–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gimonneau G, Tchioffo MT, Abate L, Boissière A, Awono-Ambéné PH, Nsango SE, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol. 2014;28:715–24.

    Article 
    PubMed 

    Google Scholar 

  • Wilke ABB, Marrelli MT. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors. 2015;8:342.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slatko BE, Luck AN, Dobson SL, Foster JM. Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol. 2014;195:88–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodgers FH, Gendrin M, Wyer CAS, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 2017;13:e1006391.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison RE, Yang X, Eum JH, Martinson VG, Dou X, Valzania L, et al. The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence. Commun Biol. 2023;6:1154.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balaji S, Shekaran SG, Prabagaran SR. Cultivable bacterial communities associated with the salivary gland of Aedes aegypti. Int J Trop Insect Sci. 2021;41:1203–11.

    Article 

    Google Scholar 

  • Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasites Vectors. 2015;8:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science. 2017;357:1399–402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and their microbiota: a review. Front Microbiol. 2019;10:2036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engel P, Moran NA. The gut microbiota of insects – Diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352:532–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee W-J, Brey PT. How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut-microbe interactions. Annu Rev Cell Dev Biol. 2013;29:571–92.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PFP, Lemos FJA. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasit Vectors. 2011;4:105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen S, Bagdasarian M, Walker ED. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Appl Environ Microbiol. 2015;81:2233–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, et al. Asaia activates immune genes in mosquito eliciting an anti-plasmodium response: implications in malaria control. Front Genet. 2019;10:836.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.

    Article 
    PubMed 

    Google Scholar 

  • Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A Gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Front Microbiol. 2019;10:1580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y, Eum J-H, Harrison RE, Valzania L, Yang X, Johnson JA, et al. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proceed Nat Acad Sci. 2021;118:e2101080118.

    Article 
    CAS 

    Google Scholar 

  • Hinman EH. A study of the food of mosquito larvae (Culicidae). Am J Epidemiol. 1930;12:238–70.

    Article 

    Google Scholar 

  • Chao J, Wistreich G. Microbial isolations from the mid-gut of Culex tarsalis Coquillett. 1959.

  • Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coon K, Vogel K, Brown M, Strand M. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors. 2016;9:375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindh JM, Borg-Karlson A-K, Faye I. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop. 2008;107:242–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scolari F, Sandionigi A, Carlassara M, Bruno A, Casiraghi M, Bonizzoni M. Exploring changes in the microbiota of Aedes albopictus: comparison among breeding site water, larvae, and adults. Front Microbiol. 2021;12:624170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011;6:e24767.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR, Strand MR. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc Natl Acad Sci USA. 2017;114:E5362–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rozeboom LE. The relation of bacteria and bacterial filtrates to the development of mosquito larvae. Am J Epidemiol. 1935;21:167–79.

    Article 
    CAS 

    Google Scholar 

  • Correa MA, Matusovsky B, Brackney DE, Steven B. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun. 2018;9:4464.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gillett JD, Roman EA, Phillips V. Erratic hatching in Aedes eggs: a new interpretation. Proc R Soc Lond B Biol Sci. 1977;196:223–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ponnusamy L, Böröczky K, Wesson DM, Schal C, Apperson CS. Bacteria stimulate hatching of yellow fever mosquito eggs. PLoS ONE. 2011;6:e24409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci USA. 2008;105:9262–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reeves WK. Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. J Vector Ecol. 2004;29:159–63.

    CAS 
    PubMed 

    Google Scholar 

  • Barredo E, DeGennaro M. Not just from blood: mosquito nutrient acquisition from nectar sources. Trends Parasitol. 2020;36:473–84.

    Article 
    PubMed 

    Google Scholar 

  • Foster W. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–74.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duneau D, Lazzaro B. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biol Lett. 2018;14:20170771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alfano N, Tagliapietra V, Rosso F, Manica M, Arnoldi D, Pindo M, et al. Changes in microbiota across developmental stages of Aedes koreicus, an invasive mosquito vector in Europe: indications for microbiota-based control strategies. Front Microbiol. 2019;10:2832.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galeano-Castañeda Y, Urrea-Aguirre P, Piedrahita S, Bascuñán P, Correa MM. Composition and structure of the culturable gut bacterial communities in Anopheles albimanus from Colombia. Lanz-Mendoza H, editor. PLoS ONE. 2019;14:e0225833.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim C-H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2019;95:fiy213.

    CAS 

    Google Scholar 

  • Guégan M, Van Tran V, Martin E, Minard G, Tran F-H, Fel B, et al. Who is eating fructose within the Aedes albopictus gut microbiota? Environ Microbiol. 2020;22:1193–206.

    Article 
    PubMed 

    Google Scholar 

  • Liu N, Zhu F, Xu Q, Pridgeon J, Gao X. Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance. 2006;49:671–9.

  • Khan S, Uddin M, Rizwan M, Khan W, Farooq M, Shah AS, et al. Mechanism of insecticide resistance in insects/pests. Pol J Environ Stud. 2020;29:2023–30.

    Article 
    CAS 

    Google Scholar 

  • Deng S, Tu L, Li L, Hu J, Li J, Tang J, et al. A symbiotic bacterium regulates the detoxification metabolism of deltamethrin in Aedes albopictus. Pestic Biochem Physiol. 2025;212:106445.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang H, Liu H, Peng H, Wang Y, Zhang C, Guo X, et al. A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide. PLoS Negl Trop Dis. 2022;16:e0010208.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatt P, Bhatt K, Huang Y, Lin Z, Chen S. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere. 2020;244:125507.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M. High Wolbachia density in insecticide-resistant mosquitoes. Proc Biol Sci. 2002;269:1413–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y-T, Shen R-X, Xing D, Zhao C-P, Gao H-T, Wu J-H, et al. Metagenome sequencing reveals the midgut microbiota makeup of culex pipiens quinquefasciatus and its possible relationship with insecticide resistance. Front Microbiol. 2021;12:625539.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharadwaj N, Sharma R, Subramanian M, Ragini G, Nagarajan SA, Rahi M. Omics approaches in understanding insecticide resistance in mosquito vectors. Int J Mol Sci. 2025;26:1854.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang H, Zhang Y, Hou Z, Wang X, Wang J, Lu Z, et al. Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. Int Biodeterior Biodegradation. 2016;106:53–9.

    Article 

    Google Scholar 

  • Paingankar M, Jain M, Deobagkar D. Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett. 2005;27:1909–13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol. 2011;90:1471–83.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao X, Zhang X, Duan B, Huo S, Lin W, Xia X, et al. Screening and genome sequencing of deltamethrin-degrading bacterium ZJ6. Curr Microbiol. 2018;75:1468–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, et al. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem. 2005;53:7415–20.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh BK. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol. 2009;7:156–64.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tago K, Yonezawa S, Ohkouchi T, Hashimoto M, Hayatsu M. Purification and characterization of fenitrothion hydrolase from Burkholderia sp. NF100. J Biosci Bioeng. 2006;101:80–2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109:8618–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Q, Li S, Ma C, Wu N, Li C, Yang X. Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2. J Environ Sci Health B. 2018;53:304–12.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soltani A, Vatandoost H, Oshaghi MA, Enayati AA, Chavshin AR. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathogens Global Health. 2017;111:289–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, et al. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol. 2023;13:1330600.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saraiva RG, Huitt-Roehl CR, Tripathi A, Cheng Y-Q, Bosch J, Townsend CA, et al. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci Rep. 2018;8:6176.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carissimo G, Pondeville E, McFarlane M, Dietrich I, Mitri C, Bischoff E, et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Natl Acad Sci USA. 2015;112:E176–85.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, Kang S, Demby C, Shields A, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. 2017;6:e28844.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charan SS, Pawar KD, Severson DW, Patole MS, Shouche YS. Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus. Parasitol Res. 2013;112:2627–37.

    Article 
    PubMed 

    Google Scholar 

  • Short SM, Mongodin EF, MacLeod HJ, Talyuli OAC, Dimopoulos G. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability. PLoS Negl Trop Dis. 2017;11:e0005677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zink SD, Van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT. Exposure to west nile virus increases bacterial diversity and immune gene expression in culex pipiens. Viruses. 2015;7:5619–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villegas LEM, Campolina TB, Barnabe NR, Orfano AS, Chaves BA, Norris DE, et al. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS ONE. 2018;13:e0190352.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zouache K, Michelland RJ, Failloux A-B, Grundmann GL, Mavingui P. Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol. 2012;21:2297–309.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreno-García M, Vargas V, Ramírez-Bello I, Hernández-Martínez G, Lanz-Mendoza H. Bacterial exposure at the larval stage induced sexual immune dimorphism and priming in adult Aedes aegypti mosquitoes. PLoS ONE. 2015;10:e0133240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;19:771–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Apte-Deshpande AD, Paingankar MS, Gokhale MD, Deobagkar DN. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus. Indian J Med Res. 2014;139:762–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Londono-Renteria B, Troupin A, Conway MJ, Vesely D, Ledizet M, Roundy CM, et al. Dengue virus infection of Aedes aegypti requires a putative cysteine rich venom protein. Plos Pathog. 2015;11:e1005202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol. 2019;37:26–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25:101-112.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang G, Asad S, Khromykh AA, Asgari S. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci Rep. 2017;7:6935.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schultz MJ, Frydman HM, Connor JH. Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology. 2018;518:406–13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Öhlund P, Lundén H, Blomström A-L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes. 2019;55:127–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-specific viruses—Transmission and interaction. Viruses. 2019;11:873.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen J, Deng S, Peng H. Insect-specific viruses used in biocontrol of mosquito-borne diseases. Interdiscipl Med. 2023;1:e20220001.

    Article 

    Google Scholar 

  • Carvalho VL, Long MT. Insect-specific viruses: an overview and their relationship to arboviruses of concern to humans and animals. Virology. 2021;557:34–43.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baidaliuk A, Miot EF, Lequime S, Moltini-Conclois I, Delaigue F, Dabo S, et al. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J Virol. 2019;93:e00705-19.

  • Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol. 2014;95:2796–808.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, et al. Potential for co-infection of a mosquito-specific flavivirus, nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses. 2015;7:5801–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasar F, Erasmus JH, Haddow AD, Tesh RB, Weaver SC. Eilat virus induces both homologous and heterologous interference. Virology. 2015;484:51–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, et al. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol. 2024;98:e0150723.

    Article 
    PubMed 

    Google Scholar 

  • Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev. 2013;26:165–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mourier T, de Alvarenga DAM, Kaushik A, de Pina-Costa A, Douvropoulou O, Guan Q, et al. The genome of the zoonotic malaria parasite Plasmodium simium reveals adaptations to host switching. BMC Biol. 2021;19:219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beier MS, Pumpuni CB, Beier JC, Davis JR. Effects of para-aminobenzoic acid, insulin, and gentamicin on Plasmodium falciparum development in anopheline mosquitoes (Diptera: Culicidae). J Med Entomol. 1994;31:561–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5:e1000423.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez M-G, Cohuet A, et al. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun. 2015;6:5921.

    Article 
    PubMed 

    Google Scholar 

  • Sharma A, Dhayal D, Singh OP, Adak T, Bhatnagar RK. Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi. Acta Trop. 2013;128:41–7.

    Article 
    PubMed 

    Google Scholar 

  • Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science. 2010;329:1353–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003;40:371–4.

    Article 
    PubMed 

    Google Scholar 

  • Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340:748–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng Y, Peng Y, Song X, Wen H, An Y, Tang H, et al. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota. Nat Microbiol. 2022;7:707–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhar R, Kumar N. Role of mosquito salivary glands. Curr Sci. 2003;85:1308–13.

    Google Scholar 

  • Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2010;19:753–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrington LB, Simmons CP. Human to mosquito transmission of dengue viruses. Front Immunol. 2014;5:290.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Vargas I, Olson KE, Black WC. The genetic basis for salivary gland barriers to arboviral transmission. Insects. 2021;12:73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong AC-N, Wang Q-P, Morimoto J, Senior AM, Lihoreau M, Neely GG, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Bio. 2017;27:2397–24044.

    Article 
    CAS 

    Google Scholar 

  • Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome. 2021;9:111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito microbiota and implications for disease control. Trends Parasitol. 2020;36:98–111.

    Article 
    PubMed 

    Google Scholar 

  • Janjoter S, Kataria D, Yadav M, Dahiya N, Sehrawat N. Transovarial transmission of mosquito-borne viruses: a systematic review. Front Cell Infect Microbiol. 2024;13:1304938.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci. 2014;111:12498–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60:644–54.

    Article 
    PubMed 

    Google Scholar 

  • Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007;104:9047–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraser JE, Bruyne JTD, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 2017;13:e1006751.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiggins FM. The spread of Wolbachia through mosquito populations. PLoS Biol. 2017;15:e2002780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, et al. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. In: Aksoy S, editor., et al., Transgenesis and the management of vector-borne disease. New York, NY: Springer; 2008. p. 49–59.

    Chapter 

    Google Scholar 

  • Rodpai R, Boonroumkaew P, Sadaow L, Sanpool O, Janwan P, Thanchomnang T, et al. Microbiome composition and microbial community structure in mosquito vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a dengue-endemic area. Insects. 2023;14:184.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gebremariam T, Leung P, Rusanganwa V. Global prevalence of naturally occurring Wolbachia in field-collected Aedes mosquitoes: a systematic review and meta-analysis. bioRxiv. 2024

  • Surasiang T, Chumkiew S, Martviset P, Chantree P, Jamklang M. Mosquito larva distribution and natural Wolbachia infection in campus areas of Nakhon Ratchasima, Thailand. Asian Pac J Trop Med. 2022;15:314–21.

    Article 
    CAS 

    Google Scholar 

  • Alvarado WA, Agudelo SO, Velez ID, Vivero RJ. Description of the ovarian microbiota of Aedes aegypti (L) Rockefeller strain. Acta Trop. 2021;214:105765.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen R. Wolbachia-induced reproductive isolation. Genome Bio. 2001;2:reports011.

    Google Scholar 

  • Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, et al. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Trop. 2014;132:S150–63.

    Article 
    PubMed 

    Google Scholar 

  • Lainson R. The American leishmaniases: some observations on their ecology and epidemiology. Trans R Soc Trop Med Hyg. 1983;77:569–96.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guernaoui S, Boussaa S, Pesson B, Boumezzough A. Nocturnal activity of phlebotomine sandflies (Diptera: Psychodidae) in a cutaneous leishmaniasis focus in Chichaoua. Morocco Parasit Res. 2006;98:184–8.

    Article 
    CAS 

    Google Scholar 

  • Lainson R. Ecological interactions in the transmission of the leishmaniases. Philos Trans R Soc Lond B Biol Sci. 1988;321:389–404.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dey R, Joshi AB, Oliveira F, Pereira L, Guimarães-Costa AB, Serafim TD, et al. Gut microbes egested during bites of infected sand flies augment severity of leishmaniasis via inflammasome-derived IL-1β. Cell Host Microbe. 2018;23:134-143.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Louradour I, Monteiro CC, Inbar E, Ghosh K, Merkhofer R, Lawyer P, et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol. 2017;19:e12755.

    Article 

    Google Scholar 

  • Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Mohebali M, Shirazi MH, et al. Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates. Parasit Vectors. 2019;12:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volf P, Kiewegová A, Nemec A. Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasit. 2002;49:73–7.

    Article 

    Google Scholar 

  • Hassan MI. A recent evaluation of the sandfly, Phlepotomus Papatasi midgut symbiotic bacteria effect on the survivorship of leshmania major. J Anc Dis Prev Rem. 2014;2:110.

    Article 

    Google Scholar 

  • Peterkova-Koci K, Robles-Murguia M, Ramalho-Ortigao M, Zurek L. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasit Vectors. 2012;5:145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17:279–89.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol. 2013;58:227–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, et al. Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg. 2008;79:881–6.

    Article 
    PubMed 

    Google Scholar 

  • Vivero RJ, Jaramillo NG, Cadavid-Restrepo G, Soto SIU, Herrera CXM. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasit Vectors. 2016;9:496.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraihi W, Fares W, Perrin P, Dorkeld F, Sereno D, Barhoumi W, et al. An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Negl Trop Dis. 2017;11:e0005484.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karakuş M, Karabey B, Orçun Kalkan Ş, Özdemir G, Oğuz G, Erişöz Kasap Ö, et al. Midgut bacterial diversity of wild populations of Phlebotomus (P.) papatasi, the vector of zoonotic cutaneous leishmaniasis (ZCL) in Turkey. Sci Rep. 2017;7:14812.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliveira SMPD, Moraes BAD, Gonçalves CA, Giordano-Dias CM, d’Almeida JM, Asensi MD, et al. Prevalência da microbiota no trato digestivo de fêmeas de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) provenientes do campo. Rev Soc Bras Med Trop. 2000;33:319–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vivero RJ, Villegas-Plazas M, Cadavid-Restrepo GE, Herrera CXM, Uribe SI, Junca H. Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Sci Rep. 2019;9:17746.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio. 2017;8:01121–216.

    Article 

    Google Scholar 

  • Monteiro CC, Villegas LEM, Campolina TB, Pires ACMA, Miranda JC, Pimenta PFP, et al. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasit Vectors. 2016;9:480.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dillon RJ, el Kordy E, Shehata M, Lane RP. The prevalence of a microbiota in the digestive tract of Phlebotomus papatasi. Ann Trop Med Parasitol. 1996;90:669–73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pires ACAM, Villegas LEM, Campolina TB, Orfanó AS, Pimenta PFP, Secundino NFC. Bacterial diversity of wild-caught Lutzomyia longipalpis (a vector of zoonotic visceral leishmaniasis in Brazil) under distinct physiological conditions by metagenomics analysis. Parasit Vectors. 2017;10:627.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maleki-Ravasan N, Ghafari SM, Najafzadeh N, Karimian F, Darzi F, Davoudian R, et al. Characterization of bacteria expectorated during forced salivation of the Phlebotomus papatasi: a neglected component of sand fly infectious inoculums. PLoS Negl Trop Dis. 2024;18:e0012165.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • SantAnna MRV, Diaz-Albiter H, Aguiar-Martins K, Al Salem WS, Cavalcante RR, Dillon VM, et al. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors. 2014;7:329.

    Article 
    PubMed 

    Google Scholar 

  • Favia GC, Karas PA, Vasileiadis S, Ligda P, Saratsis A, Sotiraki S, et al. Host species determines the composition of the prokaryotic microbiota in Phlebotomus sandflies. Pathogens. 2020;9:428.

    Article 

    Google Scholar 

  • Gunathilaka N, Perera H, Wijerathna T, Rodrigo W, Wijegunawardana ND. The diversity of midgut bacteria among wild-caught Phlebotomus argentipes (Psychodidae: Phlebotominae), the vector of leishmaniasis in Sri Lanka. BioMed Res Int. 2020;2020:5458063.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li K, Chen H, Jiang J, Li X, Xu J, Ma Y. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Sci Rep. 2016;6:36406.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sant’ Anna MR, Diaz-Albiter H, Aguiar-Martins K, Al Salem WS, Cavalcante RR, Dillon VM, et al. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors. 2014;7:329.

    Article 
    PubMed 

    Google Scholar 

  • Moraes CS, Seabra SH, Castro DP, Brazil RP, De Souza W, Garcia ES, et al. Leishmania (Leishmania) chagasi interactions with Serratia marcescens: ultrastructural studies, lysis and carbohydrate effects. Exp Parasitol. 2008;118:561–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moraes CS, Seabra SH, Albuquerque-Cunha JM, Castro DP, Genta FA, Souza WD, et al. Prodigiosin is not a determinant factor in lysis of Leishmania (Viannia) braziliensis after interaction with Serratia marcescens d-mannose sensitive fimbriae. Exp Parasitol. 2009;122:84–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mukhopadhyay J, Braig HR, Rowton ED, Ghosh K. Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World. PLoS ONE. 2012;7:e35748.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading