Molan A, Nosaka K, Hunter M, Wang W. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots. Trop Biomed. 2019;36:898–925.
Google Scholar
Pinto-Ferreira F, Caldart ET, Pasquali AKS, Mitsuka-Breganó R, Freire RL, Navarro IT. Patterns of transmission and sources of infection in out-breaks of human toxoplasmosis. Emerg Infect Dis. 2019;25:2177–82.
Google Scholar
Dubey JP. Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit Vectors. 2021;14:263.
Google Scholar
Pan M, Lyu C, Zhao J, Shen B. Sixty years (1957–2017) of research on toxoplasmosis in China-An overview. Front Microbiol. 2017;8:1825.
Google Scholar
Hampton MM. Congenital toxoplasmosis: a review. Neona Netw. 2015;34:274–8.
Johnson SK, Johnson PTJ. Toxoplasmosis: recent advances in understanding the link between infection and host behavior. Annu Rev Anim Biosci. 2021;9:249–64.
Google Scholar
Balbino LS, Bernardes JC, Ladeia WA, Martins FDC, Nino BSL, Mitsuka-Breganó R, et al. Epidemiological study of toxoplasmosis outbreaks in Brazil. Transbound Emerg Dis. 2022;69:2021–8.
Google Scholar
Hamouda MM, El-Saied AS, Zaher A, Khalil AF, ElBlihy AA, Nabih N, et al. Toxoplasma gondii: seroprevalence and association with childhood brain tumors in Egypt. Acta Trop. 2024;251:107123.
Google Scholar
Khademvatan S, Saki J, Khajeddin N, Izadi-Mazidi M, Beladi R, Shafiee B, et al. Toxoplasma gondii exposure and the risk of schizophrenia. Jundishapur J Microbiol. 2014;7:e12776.
Google Scholar
Groër MW, Yolken RH, Xiao JC, Beckstead JW, Fuchs D, Mohapatra SS, et al. Prenatal depression and anxiety in Toxoplasma gondii-positive women. Am J Obstet Gynecol. 2011;204:433.e1-7.
Google Scholar
Pedersen MG, Mortensen PB, Norgaard-Pedersen B, Postolache TT. Toxoplasma gondii infection and self-directed violence in mothers. Arch Gen Psychiatry. 2012;69:1123–30.
Google Scholar
Miman O, Mutlu EA, Ozcan O, Atambay M, Karlidag R, Unal S. Is there any role of Toxoplasma gondii in the etiology of obsessive–compulsive disorder? Psychiatry Res. 2010;177:263–5.
Google Scholar
Ahlers AA, Mitchell MA, Dubey JP. Risk factors for Toxoplasma gondii exposure in semiaquatic mammals in a freshwater ecosystem. J Wildl Dis. 2015;51:488–92.
Google Scholar
Zhu S, VanWormer E, Martínez-López B, Bahia-Oliveira LMG, DaMatta RA, Rodrigues PS, et al. Quantitative risk assessment of oocyst versus bradyzoite foodborne transmission of Toxoplasma gondii in Brazil. Pathogens. 2023;12:870.
Google Scholar
Liu XY, Wang ZD, El-Ashram S, Liu Q. Toxoplasma gondii oocyst-driven infection in pigs, chickens and humans in northeastern China. BMC Vet Res. 2019;15:366.
Google Scholar
Dubey JP, Cerqueira-Cézar CK, Murata FHA, Kwok OCH, Yang YR, Su C. All about toxoplasmosis in cats: the last decade. Vet Parasitol. 2020;283:109145.
Google Scholar
Dubey JP. Toxoplasmosis of animals and humans. 3rd ed. Boca Raton: CRC Press; 2021. p. 135–50.
Frenkel JK, Ruiz A, Chinchilla M. Soil survival of Toxoplasma oocysts in Kansas and Costa Rica. Am J Trop Med Hyg. 1975;24:439–43.
Google Scholar
Dubey JP, Lunney JK, Shen SK, Kwok OC, Ashford DA, Thulliez P. Infectivity of low numbers of Toxoplasma gondii oocysts to pigs. J Parasitol. 1996;82:438–43.
Google Scholar
Barash NR, Maloney JG, Singer SM, Dawson SC. Giardia alters commensal microbial diversity throughout the murine gut. Infect Immun. 2017;85:e00948-e1016.
Google Scholar
Dong H, Chen X, Zhao X, Zhao C, Mehmood K, Kulyar MF, et al. Intestine microbiota and SCFAs response in naturally Cryptosporidium-infected plateau yaks. Front Cell Infect Microbiol. 2023;13:1105126.
Google Scholar
Prabakaran M, Weible LJ, Champlain JD, Jiang RY, Biondi K, Weil AA, et al. The gut-wrenching effects of cryptosporidiosis and giardiasis in children. Microorganisms. 2023;11:2323.
Google Scholar
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, et al. Human intestinal microbiota: interaction between parasites and the host immune response. Arch Med Res. 2017;48:690–700.
Google Scholar
Fujishiro MA, Lidbury JA, Pilla R, Steiner JM, Lappin MR, Suchodolski JS. Evaluation of the effects of anthelmintic administration on the fecal microbiome of healthy dogs with and without subclinical Giardia spp. and Cryptosporidium canis infections. PLoS ONE. 2020;15:e0228145.
Google Scholar
Zhao G, Zhang L, Dai L, Xu H, Xu C, Xiao T, et al. Development of Toxoplasma gondii Chinese I genotype Wh6 strain in cat intestinal epithelial cells. Korean J Parasitol. 2022;60:241–6.
Google Scholar
Hayes TB, Stuart AA, Mendoza M, Collins A, Noriega N, Vonk A, et al. Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17beta-estradiol): support for the demasculinization/feminization hypothesis. Environ Health Perspect. 2006;114:134–41.
Google Scholar
Carriquiriborde P, Fernandino JI, López CG, Benito ES, Gutierrez-Villagomez JM, Cristos D, et al. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. Aquat Toxicol. 2023;254:106366.
Google Scholar
Labourel A, Parrou JL, Deraison C, Mercier-Bonin M, Lajus S, Potocki-Veronese G. O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases. Essays Biochem. 2023;67:331–44.
Google Scholar
Hobbs EEM, Gloster TM, Pritchard L. cazy_webscraper: local compilation and interrogation of comprehensive CAZyme datasets. Microb Genom. 2023;9:mgen001086.
Google Scholar
Álvarez García G, Davidson R, Jokelainen P, Klevar S, Spano F, Seeber F. Identification of oocyst-driven Toxoplasma gondii infections in humans and animals through stage-specific serology-current status and future perspectives. Microorganisms. 2021;9:2346.
Google Scholar
Zhu S, Shapiro K, VanWormer E. Dynamics and epidemiology of Toxoplasma gondii oocyst shedding in domestic and wild felids. Transbound Emerg Dis. 2022;69:2412–23.
Google Scholar
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Rev Microbiol. 2022;20:542–56.
Google Scholar
Crouch LI, Liberato MV, Urbanowicz PA, Baslé A, Lamb CA, Stewart CJ, et al. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat Commun. 2020;11:4017.
Google Scholar
Hughes GW, Ridley C, Collins R, Roseman A, Ford R, Thornto DJ. The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH. Sci Rep. 2019;9:17350.
Google Scholar
Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49.
Google Scholar
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol. 2022;18:683–98.
Google Scholar
Knight LC, Wang M, Donovan SM, Dilger RN. Early-life iron deficiency and subsequent repletion alters development of the colonic microbiota in the pig. Front Nutr. 2019;6:120.
Google Scholar
Karamantziani T, Pouliakis A, Xanthos T, Ekmektzoglou K, Paliatsiou S, Sokou R, et al. The effect of oral iron supplementation/fortification on the gut microbiota in infancy: a systematic review and meta-analysis. Children (Basel). 2024;11:231.
Google Scholar
McOrist S, Muller Wager A, Kratzer D, Sjösten CG. Therapeutic efficacy of water-soluble lincomycin-spectinomycin powder against porcine proliferation enteropathy in a European field study. Vet Rec. 2000;146:61–5.
Google Scholar
El-Gamal MI, Brahim I, Hisham N, Aladdin R, Mohammed H, Bahaaeldin A. Recent updates of carbapenem antibiotics. Eur J Med Chem. 2017;131:185–95.
Google Scholar
Charania R, Wade BE, McNair NN, Mead JR. Changes in the microbiome of Cryptosporidium-infected mice correlate to differences in susceptibility and infection levels. Microorganisms. 2020;8:879.
Google Scholar
Meng JX, Wei XY, Guo H, Chen Y, Wang W, Geng HL, et al. Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii. Front Immunol. 2023;14:1156397.
Google Scholar
Shao DY, Bai X, Tong MW, Zhang YY, Liu XL, Zhou YH, et al. Changes to the gut microbiota in mice induced by infection with Toxoplasma gondii. Acta Trop. 2020;203:105301.
Google Scholar
Riba A, Hassani K, Walker A, van Best N, von Zezschwitz D, Anslinger T, et al. Disturbed gut microbiota and bile homeostasis in Giardia-infected mice contributes to metabolic dysregulation and growth impairment. Sci Transl Med. 2020;12:eaay7019.
Google Scholar
Mammeri M, Chevillot A, Thomas M, Julien C, Auclair E, Pollet T, et al. Cryptosporidium parvum-infected neonatal mice show gut microbiota remodelling using high-throughput sequencing analysis: preliminary results. Acta Parasitol. 2019;64:268–75.
Google Scholar
Chen Y, Liu Y, Wang Y, Chen X, Wang C, Chen X, et al. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARalpha-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res. 2022;41:1.
Google Scholar
Zawistowska-Rojek A, Kośmider A, Stępień K, Tyski S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch Microbiol. 2022;204:285.
Google Scholar
van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM, de Groot PJ, et al. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci USA. 2009;106:2371–6.
Google Scholar
Cheng J, Hu J, Geng F, Nie S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Sci Human Wellness. 2022;11:1101–10.
Google Scholar
Hu S, Wang J, Xu Y, Yang H, Wang J, Xue C, et al. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food Funct. 2019;10:1736–46.
Google Scholar
Salsinha AS, Pimentel LL, Fontes AL, Gomes AM, Rodríguez-Alcalá LM. Microbial production of conjugated linoleic acid and conjugated linolenic acid relies on a multienzymatic system. Microbiol Microbiol Mol Biol Rev. 2018;82:e00019-e118.
Google Scholar
Martorelli Di Genova B, Wilson SK, Dubey JP, Knoll LJ. Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. PLoS Biol. 2019;17:e3000364.
Google Scholar
Yang Y, Zheng X, Wang Y, Tan X, Zou H, Feng S, et al. Human fecal microbiota transplantation reduces the susceptibility to dextran sulfate sodium-induced germ-free mouse colitis. Front Immunol. 2022;13:836542.
Google Scholar
Hyun YJ, Jung IH, Kim DH. Expression of heparinase I of Bacteroides stercoris HJ-15 and its degradation tendency toward heparin-like glycosaminoglycans. Carbohydr Res. 2012;359:37–43.
Google Scholar
Wang Y, Ma M, Dai W, Shang Q, Yu G. Bacteroides salyersiae is a potent chondroitin sulfate-degrading species in the human gut microbiota. Microbiome. 2024;12:41.
Google Scholar