Deletion viral genome diversity among bovine viral diarrhea virus (BVDV) 1a and 1b strains | Virology Journal

  • Bell RL, Turkington HL, Cosby SL. The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel). 2021;9(4).

  • Richter V, Lebl K, Baumgartner W, Obritzhauser W, Kasbohrer A, Pinior B. A systematic worldwide review of the direct monetary losses in cattle due to bovine viral diarrhoea virus infection. Vet J. 2017;220:80–7.

    PubMed 

    Google Scholar 

  • Grooms DL. Reproductive consequences of infection with bovine viral diarrhea virus. Vet Clin North Am Food Anim Pract. 2004;20(1):5–19.

    PubMed 

    Google Scholar 

  • Rodning SP, Givens MD, Marley MS, Zhang Y, Riddell KP, Galik PK, et al. Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of heifers. Theriogenology. 2012;78(7):1508–16.

    CAS 
    PubMed 

    Google Scholar 

  • Pang F, Long Q, Wei M. Immune evasion strategies of bovine viral diarrhea virus. Front Cell Infect Microbiol. 2023;13:1282526.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khodakaram-Tafti A, Farjanikish GH. Persistent bovine viral diarrhea virus (BVDV) infection in cattle herds. Iran J Vet Res. 2017;18(3):154–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riley JM, Peel DS, Raper KC, Hurt C. Invited Review: Economic consequences of beef cow-calf disease mismanagement: Bovine viral diarrhea virus. Applied Animal Science. 2019;35(6):606–14.

    Google Scholar 

  • Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch Virol. 2022;167(11):2429–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins ME, Desport M, Brownlie J. Bovine viral diarrhea virus quasispecies during persistent infection. Virology. 1999;259(1):85–98.

    CAS 
    PubMed 

    Google Scholar 

  • Yesilbag K, Alpay G, Becher P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses. 2017;9(6).

  • Peterhans E, Bachofen C, Stalder H, Schweizer M. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction. Vet Res. 2010;41(6):44.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, et al. ICTV Virus Taxonomy Profile: Flaviviridae. J Gen Virol. 2017;98(1):2–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tautz N, Tews BA, Meyers G. The Molecular Biology of Pestiviruses. Adv Virus Res. 2015;93:47–160.

    CAS 
    PubMed 

    Google Scholar 

  • Neill JD. Molecular biology of bovine viral diarrhea virus. Biologicals. 2013;41(1):2–7.

    CAS 
    PubMed 

    Google Scholar 

  • Chi S, Chen S, Jia W, He Y, Ren L, Wang X. Non-structural proteins of bovine viral diarrhea virus. Virus Genes. 2022;58(6):491–500.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front Vet Sci. 2021;8: 665128.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Manzoni TB, Lopez CB. Defective (interfering) viral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virol. 2018;13(7):493–503.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vignuzzi M, Lopez CB. Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol. 2019;4(7):1075–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez Aparicio LJ, Lopez CB, Felt SA. A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. Microbiol Mol Biol Rev. 2022;86(3): e0008621.

    PubMed 

    Google Scholar 

  • Von Magnus P. Incomplete forms of influenza virus. Adv Virus Res. 1954;2:59–79.

    Google Scholar 

  • Xue J, Chambers BS, Hensley SE, Lopez CB. Propagation and Characterization of Influenza Virus Stocks That Lack High Levels of Defective Viral Genomes and Hemagglutinin Mutations. Front Microbiol. 2016;7:326.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Von Magnus P. Propagation of the PR8 strain of influenza A virus in chick embryos. III. Properties of the incomplete virus produced in serial passages of undiluted virus. Acta Pathol Microbiol Scand. 1951;29(2):157-81.

  • Huang AS, Baltimore D. Defective viral particles and viral disease processes. Nature. 1970;226(5243):325–7.

    CAS 
    PubMed 

    Google Scholar 

  • Von Magnus P. Studies on Interferenee in Experimental Influenza. I. Biological Observations. Arkiv for Kemi, Mineralogi och Geologi. 1947;24 B(7):6 pp.

  • Sekellick MJ, Marcus PI. Persistent infection. I Interferon-inducing defective-interfering particles as mediators of cell sparing: possible role in persistent infection by vesicular stomatitis virus. Virology. 1978;85(1):175-86.

  • Rabinowitz SG, Huprikar J. The influence of defective-interfering particles of the PR-8 strain of influenza A virus on the pathogenesis of pulmonary infection in mice. J Infect Dis. 1979;140(3):305–15.

    CAS 
    PubMed 

    Google Scholar 

  • Marcus PI, Sekellick MJ. Defective interfering particles with covalently linked [+/-]RNA induce interferon. Nature. 1977;266(5605):815–9.

    CAS 
    PubMed 

    Google Scholar 

  • Yount JS, Kraus TA, Horvath CM, Moran TM, Lopez CB. A novel role for viral-defective interfering particles in enhancing dendritic cell maturation. J Immunol. 2006;177(7):4503–13.

    CAS 
    PubMed 

    Google Scholar 

  • Fuller FJ, Marcus PI. Interferon induction by viruses. IV. Sindbis virus: early passage defective-interfering particles induce interferon. J Gen Virol. 1980;48(1):63-73.

  • Strahle L, Garcin D, Kolakofsky D. Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology. 2006;351(1):101–11.

    CAS 
    PubMed 

    Google Scholar 

  • Mercado-Lopez X, Cotter CR, Kim WK, Sun Y, Munoz L, Tapia K, Lopez CB. Highly immunostimulatory RNA derived from a Sendai virus defective viral genome. Vaccine. 2013;31(48):5713–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher DG, Coppock GM, Lopez CB. Virus-derived immunostimulatory RNA induces type I IFN-dependent antibodies and T-cell responses during vaccination. Vaccine. 2018;36(28):4039–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher DG, Gnazzo V, Holthausen DJ, Lopez CB. Non-standard viral genome-derived RNA activates TLR3 and type I IFN signaling to induce cDC1-dependent CD8+ T-cell responses during vaccination in mice. Vaccine. 2022;40(50):7270–9.

    CAS 
    PubMed 

    Google Scholar 

  • Dimmock NJ, Easton AJ. Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol. 2014;88(10):5217–27.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrault J, Semler BL. Internal genome deletions in two distinct classes of defective interfering particles of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1979;76(12):6191–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nomoto A, Jacobson A, Lee YF, Dunn J, Wimmer E. Defective interfering particles of poliovirus: mapping of the deletion and evidence that the deletions in the genomes of DI(1), (2) and (3) are located in the same region. J Mol Biol. 1979;128(2):179–96.

    CAS 
    PubMed 

    Google Scholar 

  • Vasilijevic J, Zamarreno N, Oliveros JC, Rodriguez-Frandsen A, Gomez G, Rodriguez G, et al. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog. 2017;13(10): e1006650.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Slyke GA, Arnold JJ, Lugo AJ, Griesemer SB, Moustafa IM, Kramer LD, et al. Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes. PLoS Pathog. 2015;11(6): e1005009.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Noppornpanth S, Smits SL, Lien TX, Poovorawan Y, Osterhaus AD, Haagmans BL. Characterization of hepatitis C virus deletion mutants circulating in chronically infected patients. J Virol. 2007;81(22):12496–503.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinton MA. Characterization of West Nile virus persistent infections in genetically resistant and susceptible mouse cells. I. Generation of defective nonplaquing virus particles. Virology. 1982;116(1):84-98.

  • Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J. Defective interfering viral particles in acute dengue infections. PLoS ONE. 2011;6(4): e19447.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Timm C, Akpinar F, Yin J. Quantitative characterization of defective virus emergence by deep sequencing. J Virol. 2014;88(5):2623–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Routh A, Johnson JE. Discovery of functional genomic motifs in viruses with ViReMa-a Virus Recombination Mapper-for analysis of next-generation sequencing data. Nucleic Acids Res. 2014;42(2): e11.

    CAS 
    PubMed 

    Google Scholar 

  • Achouri E, Felt SA, Hackbart M, Rivera-Espinal NS, Lopez CB. VODKA2: a fast and accurate method to detect non-standard viral genomes from large RNA-seq data sets. RNA. 2023;30(1):16–25.

    PubMed 

    Google Scholar 

  • Neill JD, Workman AM, Hesse R, Bai J, Porter EP, Meadors B, et al. Identification of BVDV2b and 2c subgenotypes in the United States: Genetic and antigenic characterization. Virology. 2019;528:19–29.

    CAS 
    PubMed 

    Google Scholar 

  • Ridpath JF, Bolin SR, Dubovi EJ. Segregation of bovine viral diarrhea virus into genotypes. Virology. 1994;205(1):66–74.

    CAS 
    PubMed 

    Google Scholar 

  • Falkenberg SM, Dassanayake RP, Walz P, Casas E, Neill JD, Ridpath JF. Frequency of bovine viral diarrhea virus detected in subpopulations of peripheral blood mononuclear cells in persistently infected animals and health outcome. Vet Immunol Immunopathol. 2019;207:46–52.

    CAS 
    PubMed 

    Google Scholar 

  • Bauermann FV, Flores EF, Ridpath JF. Antigenic relationships between Bovine viral diarrhea virus 1 and 2 and HoBi virus: possible impacts on diagnosis and control. J Vet Diagn Invest. 2012;24(2):253–61.

    PubMed 

    Google Scholar 

  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870-4.

  • Reed LJ, Muench H. A Simple Method of Estimating Fifty Per Cent Endpoints. Am J Epidemiol. 1938;27(3):493–7.

    Google Scholar 

  • Ridpath JF, Bolin SR. Differentiation of types 1a, 1b and 2 bovine viral diarrhoea virus (BVDV) by PCR. Mol Cell Probes. 1998;12(2):101–6.

    CAS 
    PubMed 

    Google Scholar 

  • Neill JD, Bayles DO, Ridpath JF. Simultaneous rapid sequencing of multiple RNA virus genomes. J Virol Methods. 2014;201:68–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mosena ACS, Falkenberg SM, Ma H, Casas E, Dassanayake RP, Walz PH, et al. Multivariate analysis as a method to evaluate antigenic relationships between BVDV vaccine and field strains. Vaccine. 2020;38(36):5764–72.

    CAS 
    PubMed 

    Google Scholar 

  • Mosena ACS, Falkenberg SM, Ma H, Casas E, Dassanayake RP, Booth R, et al. Use of multivariate analysis to evaluate antigenic relationships between US BVDV vaccine strains and non-US genetically divergent isolates. J Virol Methods. 2022;299: 114328.

    CAS 
    PubMed 

    Google Scholar 

  • Mosena ACS, Ma H, Casas E, Dassanayake RP, Canal CW, Neill JD, Falkenberg SM. Multivariate analysis reveals that BVDV field isolates do not show a close VN-based antigenic relationship to US vaccine strains. BMC Res Notes. 2023;16(1):121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falkenberg SM, Ma H, Casas E, Dassanayake RP, Bolton MW, Raithel G, et al. Multivariate Analysis as a Method to Evaluate Antigenic Relationships between Bovine Viral Diarrhea Virus 1b Isolates and Vaccine Strains. Viruses. 2023;15(10).

  • Frensing T, Heldt FS, Pflugmacher A, Behrendt I, Jordan I, Flockerzi D, et al. Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles. PLoS ONE. 2013;8(9): e72288.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlson J, Kammerer R, Teifke JP, Sehl-Ewert J, Pfarrer C, Meyers G. A double deletion prevents replication of the pestivirus bovine viral diarrhea virus in the placenta of pregnant heifers. PLoS Pathog. 2021;17(12): e1010107.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyers G, Ege A, Fetzer C, von Freyburg M, Elbers K, Carr V, et al. Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol. 2007;81(7):3327–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray CL, Marcotrigiano J, Rice CM. Bovine viral diarrhea virus core is an intrinsically disordered protein that binds RNA. J Virol. 2008;82(3):1294–304.

    CAS 
    PubMed 

    Google Scholar 

  • Sotcheff S, Routh A. Understanding Flavivirus Capsid Protein Functions: The Tip of the Iceberg. Pathogens. 2020;9(1).

  • Tan TY, Fibriansah G, Kostyuchenko VA, Ng TS, Lim XX, Zhang S, et al. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat Commun. 2020;11(1):895.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang X, Zhang Y, Jia R, Wang M, Yin Z, Cheng A. Structure and function of capsid protein in flavivirus infection and its applications in the development of vaccines and therapeutics. Vet Res. 2021;52(1):98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlick P, Taucher C, Schittl B, Tran JL, Kofler RM, Schueler W, et al. Helices alpha2 and alpha3 of West Nile virus capsid protein are dispensable for assembly of infectious virions. J Virol. 2009;83(11):5581–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kofler RM, Heinz FX, Mandl CW. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J Virol. 2002;76(7):3534–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He Y, Wang X, Guo J, Mao L, Zhang S, Hu T, et al. Replication/Assembly Defective Avian Flavivirus With Internal Deletions in the Capsid Can Be Used as an Approach for Living Attenuated Vaccine. Front Immunol. 2021;12: 694959.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridpath JF, Lovell G, Neill JD, Hairgrove TB, Velayudhan B, Mock R. Change in predominance of Bovine viral diarrhea virus subgenotypes among samples submitted to a diagnostic laboratory over a 20-year time span. J Vet Diagn Invest. 2011;23(2):185–93.

    PubMed 

    Google Scholar 

  • Walz PH, Chamorro MF, S MF, Passler T, van der Meer F, A RW. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med. 2020;34(5):1690-706.

  • Hashiguchi Y, Inui S, Nanba K, Kumagai T. Bovine virus diarrhea-mucosal disease. II. Isolation and characterization of a cytopathogenic virus and experimental production of the disease. Natl Inst Anim Health Q (Tokyo). 1978;18(3-4):118-27.

  • BielefeldtOhmann H, Ronsholt L, Bloch B. Demonstration of bovine viral diarrhoea virus in peripheral blood mononuclear cells of persistently infected, clinically normal cattle. J Gen Virol. 1987;68(Pt 7):1971–82.

    Google Scholar 

  • Continue Reading