The criteria to classify body-proportionality of the small for gestational age newborn: a scoping review | BMC Pregnancy and Childbirth

  • Vayssière C, Sentilhes L, Ego A, Bernard C, Cambourieu D, Flamant C, et al. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French college of gynaecologists and obstetricians. Eur J Obstet Gynecol Reprod Biol. 2015;193:10–8.

    PubMed 

    Google Scholar 

  • Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967;71:159–63.

    CAS 
    PubMed 

    Google Scholar 

  • Beune IM, Bloomfield FH, Ganzevoort W, Embleton ND, Rozance PJ, van Wassenaer-Leemhuis AG, et al. Consensus based definition of growth restriction in the newborn. J Pediatr. 2018;196:71-6.e1.

    PubMed 

    Google Scholar 

  • Hughes MM, Black RE, Katz J. 2500-g low birth weight cutoff: history and implications for future research and policy. Matern Child Health J. 2017;21:283–9.

    PubMed 

    Google Scholar 

  • Landmann E, Reiss I, Misselwitz B, Gortner L. Ponderal index for discrimination between symmetric and asymmetric growth restriction: percentiles for neonates from 30 weeks to 43 weeks of gestation. J Matern Fetal Neonatal Med. 2006;19:157–60.

    PubMed 

    Google Scholar 

  • Bhat MA, Kumar P, Bhansali A, Majumdar S, Narang A. Hypoglycemia in small for gestational age babies. Indian J Pediatr. 2000;67:423–7.

    CAS 
    PubMed 

    Google Scholar 

  • Geva R, Eshel R, Leitner Y, Fattal-Valevski A, Harel S. Memory functions of children born with asymmetric intrauterine growth restriction. Brain Res. 2006;1117:186–94.

    CAS 
    PubMed 

    Google Scholar 

  • Bocca-Tjeertes I, Bos A, Kerstjens J, de Winter A, Reijneveld S. Symmetrical and asymmetrical growth restriction in preterm-born children. Pediatrics. 2014;133: e650–6.

    PubMed 

    Google Scholar 

  • Chard T, Costeloe K, Leaf A. Evidence of growth retardation in neonates of apparently normal weight. Eur J Obstet Gynecol Reprod Biol. 1992;45:59–62.

    CAS 
    PubMed 

    Google Scholar 

  • Levit Y, Dym L, Yochpaz S, Manor Y, Adler A, Halutz O, et al. Assessment of risk indicators for targeted cytomegalovirus screening in neonates. Neonatology. 2020;117:750–5.

    PubMed 

    Google Scholar 

  • Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.

    CAS 
    PubMed 

    Google Scholar 

  • Karadavut B, Smits I, Van Dillen J, Hogeveen M. The criteria to classify body-proportionality of the small for gestational age newborn: a scoping review protocol. OSF Preprints. 2021. https://doi.org/10.31219/osf.io/wnjhe.

    Google Scholar 

  • Peters MDJ, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth. 2020;18:2119–26.

    PubMed 

    Google Scholar 

  • Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.

    PubMed 

    Google Scholar 

  • McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–6.

    PubMed 

    Google Scholar 

  • The Endnote Team. EndNote. Endnote X9 ed. Philadelphia, PA: Clarivate; 2013.

    Google Scholar 

  • Bramer WM, Giustini D, de Jonge GB, Holland L, Bekhuis T. De-duplication of database search results for systematic reviews in endnote. J Med Libr Assoc. 2016;104:240–3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5: 210.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberico S, Gergolet M, Maso G, Marchesan E, Pinzano R, Bogatti P, et al. Evaluation of the risk factors correlated with unfavourable neonatal outcome in a population of small-for-date newborns. J Foetal Med. 1993;13:20–7.

    Google Scholar 

  • Caulfield LE, Haas JD, Belizán JM, Rasmussen KM, Edmonston B. Differences in early postnatal morbidity risk by pattern of fetal growth in Argentina. Paediatr Perinat Epidemiol. 1991;5:263–75.

    CAS 
    PubMed 

    Google Scholar 

  • Jaya DS, Kumar NS, Bai LS. Anthropometric indices, cord length and placental weight in newborns. Indian Pediatr. 1995;32:1183–8.

    CAS 
    PubMed 

    Google Scholar 

  • Balcazar H, Haas J. Classification schemes of small-for-gestational age and type of intrauterine growth retardation and its implications to early neonatal mortality. Early Hum Dev. 1990;24:219–30.

    CAS 
    PubMed 

    Google Scholar 

  • Lubchenco LO, Hansman C, Boyd E. Intrauterine growth in length and head circumference as estimated from live births at gestational ages from 26 to 42 weeks. Pediatrics. 1966;37:403–8.

    CAS 
    PubMed 

    Google Scholar 

  • Balcazar H, Haas JD. Retarded fetal growth patterns and early neonatal mortality in a Mexico City population. Bull Pan Am Health Organ. 1991;25:55–63.

    CAS 
    PubMed 

    Google Scholar 

  • Yu LM, Hey E, Doyle LW, Farrell B, Spark P, Altman DG, et al. Evaluation of the Ages and Stages Questionnaires in identifying children with neurosensory disability in the Magpie Trial follow-up study. Acta Paediatr. 2007;96:1803–8.

    PubMed 

    Google Scholar 

  • Miller HC, Hassanein K. Diagnosis of impaired fetal growth in newborn infants. Pediatrics. 1971;48:511–22.

    CAS 
    PubMed 

    Google Scholar 

  • Brandt I, Sticker EJ, Lentze MJ. Catch-up growth of head circumference of very low birth weight, small for gestational age preterm infants and mental development to adulthood. J Pediatr. 2003;142:463–8.

    PubMed 

    Google Scholar 

  • Cole TJ, Henson GL, Tremble JM, Colley NV. Birthweight for length: ponderal index, body mass index or Benn index? Ann Hum Biol. 1997;24:289–98.

    CAS 
    PubMed 

    Google Scholar 

  • La Batide-Alanore A, Trégouët DA, Jaquet D, Bouyer J, Tiret L. Familial aggregation of fetal growth restriction in a French cohort of 7,822 term births between 1971 and 1985. Am J Epidemiol. 2002;156:180–7.

    PubMed 

    Google Scholar 

  • Launer LJ, Villar J, Kestler E. Epidemiological differences among birth weight and gestational age subgroups of newborns. Am J Hum Biol. 1991;3:425–33.

    PubMed 

    Google Scholar 

  • Cuttini M, Cortinovis I, Bossi A, de Vonderweid U. Proportionality of small for gestational age babies as a predictor of neonatal mortality and morbidity. Paediatr Perinat Epidemiol. 1991;5:56–63.

    CAS 
    PubMed 

    Google Scholar 

  • Nieto A, Matorras R, Villar J, Serra M. Neonatal morbidity associated with disproportionate intrauterine growth retardation at term. J Obstet Gynaecol- J Inst Obstet Gynaecol. 1998;18:540–3.

    CAS 

    Google Scholar 

  • O’Callaghan MJ, Harvey JM, Tudehope DI, Gray PH. Aetiology and classification of small for gestational age infants. J Paediatr Child Health. 1997;33:213–8.

    PubMed 

    Google Scholar 

  • Espiritu MM, Bailey S, Wachtel EV, Mally PV. Utility of routine urine CMV PCR and total serum IgM testing of small for gestational age infants: a single center review. J Perinat Med. 2018;46:81–6.

    CAS 
    PubMed 

    Google Scholar 

  • Olsen IE, Lawson ML, Meinzen-Derr J, Sapsford AL, Schibler KR, Donovan EF, et al. Use of a body proportionality index for growth assessment of preterm infants. J Pediatr. 2009;154:486–91.

    PubMed 

    Google Scholar 

  • Kramer MS, Demissie K, Yang H, Platt RW, Sauvé R, Liston R. The contribution of mild and moderate preterm birth to infant mortality. JAMA. 2000;284:843–9.

    CAS 
    PubMed 

    Google Scholar 

  • Guellec I, Marret S, Baud O, Cambonie G, Lapillonne A, Roze JC, et al. Intrauterine growth restriction, head size at birth, and outcome in very preterm infants. J Pediatr. 2015;167:975-81.e2.

    PubMed 

    Google Scholar 

  • Hei M, Lee SK, Shah PS, Jain A. Outcomes for symmetrical and asymmetrical small for gestational age preterm infants in Canadian tertiary nicus. Am J Perinatol. 2015;32:725–32.

    PubMed 

    Google Scholar 

  • Kotecha SJ, Watkins WJ, Heron J, Henderson J, Dunstan FD, Kotecha S. Spirometric lung function in school-age children: effect of intrauterine growth retardation and catch-up growth. Am J Respir Crit Care Med. 2010;181:969–74.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vik T, Vatten L, Markestad T, Ahlsten G, Jacobsen G, Bakketeig LS. Morbidity during the first year of life in small for gestational age infants. Arch Dis Child Fetal Neonatal Ed. 1996;75:F33-7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ovali F. Intrauterine growth curves for Turkish infants born between 25 and 42 weeks of gestation. J Trop Pediatr. 2003;49:381–3.

    PubMed 

    Google Scholar 

  • Horacio Fescina R, Martell M, Martinez G, Lastra L, Schwarcz R. Small for dates: evaluation of different diagnostic methods. Acta Obstet Gynecol Scand. 1987;66:221–6.

    CAS 
    PubMed 

    Google Scholar 

  • Hou J, Cliver SP, Tamura T, Johnston KE, Goldenberg R. Maternal serum ferritin and fetal growth. Obstet Gynecol. 2000;95:447–52.

    CAS 
    PubMed 

    Google Scholar 

  • Imamoglu EY, Gursoy T, Sancak S, Ovali F. Does being born small-for-gestational-age affect cerebellar size in neonates? The Journal of Maternal-Fetal & Neonatal Medicine. 2016;29:892–6.

    Google Scholar 

  • Campbell S. The assessment of fetal development by diagnostic ultrasound. Clin Perinatol. 1974;1:507–24.

    CAS 
    PubMed 

    Google Scholar 

  • Kaur H, Bhalla AK, Kumar P. Longitudinal growth of head circumference in term symmetric and asymmetric small for gestational age infants. Early Hum Dev. 2012;88:473–8.

    PubMed 

    Google Scholar 

  • Akram DS, Arif F. Ponderal index of low birth weight babies–a hospital based study. JPMA J Pakistan Med Assoc. 2005;55:229–31.

    Google Scholar 

  • Mamelle N, Munoz F, Grandjean H. Fetal growth from the AUDIPOG study. I. Establishment of reference curves. J Gynecol Obstet Biol Reprod. 1996;25:61–70.

    CAS 

    Google Scholar 

  • Maciejewski E, Hamon I, Fresson J, Hascoet JM. Growth and neurodevelopment outcome in symmetric versus asymmetric small for gestational age term infants. J Perinatol. 2016;36:670–5.

    CAS 
    PubMed 

    Google Scholar 

  • Makhoul IR, Goldstein I, Epelman M, Tamir A, Reece EA, Sujov P. Neonatal transverse cerebellar diameter in normal and growth-restricted infants. The Journal of Maternal-Fetal Medicine. 2000;9:155–60.

    CAS 
    PubMed 

    Google Scholar 

  • Ochiai M, Nakayama H, Sato K, Iida K, Hikino S, Ohga S, et al. Head circumference and long-term outcome in small-for-gestational age infants. J Perinat Med. 2008;36:341–7.

    PubMed 

    Google Scholar 

  • Lin CC, Su SJ, River LP. Comparison of associated high-risk factors and perinatal outcome between symmetric and asymmetric fetal intrauterine growth retardation. Am J Obstet Gynecol. 1991;164:1535–41. discussion 41– 2.

    CAS 
    PubMed 

    Google Scholar 

  • Oluwafemi OR, Njokanma FO, Disu EA, Ogunlesi TA. Current pattern of ponderal indices of term small-for-gestational age in a population of Nigerian babies. BMC Pediatr. 2013;13:110.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strauss RS, Dietz WH. Effects of intrauterine growth retardation in premature infants on early childhood growth. J Pediatr. 1997;130:95–102.

    CAS 
    PubMed 

    Google Scholar 

  • Rohrer R. Der index der Korperffulle Als mass des ernahrungszustandes. Munch Med Wochenschr. 1921;68:580–3.

    Google Scholar 

  • Aydın H, Demirkaya E, Karadeniz RS, Olgun A, Alpay F. Assessing leptin and soluble leptin receptor levels in full-term asymmetric small for gestational age and healthy neonates. Turk J Pediatr. 2014;56:250–8.

    PubMed 

    Google Scholar 

  • Markestad T, Vik T, Ahlsten G, Gebre-Medhin M, Skjaerven R, Jacobsen G, et al. Small-for-gestational-age (SGA) infants born at term: growth and development during the first year of life. Acta Obstet Et Gynecol Scand Supplement. 1997;165:93–101.

    CAS 

    Google Scholar 

  • Dadabhai S, Gadama L, Chamanga R, Kawalazira R, Katumbi C, Makanani B, et al. Pregnancy outcomes in the era of universal antiretroviral treatment in sub-Saharan Africa (POISE study). J Acquir Immune Defic Syndr. 2019;80:7–14.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez G, Collado MP, Samper MP, Biosca M, Bueno O, Valle S, et al. Subcutaneous fat distribution in small for gestational age newborns. J Perinat Med. 2011;39:355–7.

    PubMed 

    Google Scholar 

  • Rumrich I, Vähäkangas K, Viluksela M, Gissler M, de Ruyter H, Hänninen O. Effects of maternal smoking on body size and proportions at birth: a register-based cohort study of 1.4 million births. BMJ Open. 2020;10:e033465.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cinar B, Sert A, Gokmen Z, Aypar E, Aslan E, Odabas D. Left ventricular dimensions, systolic functions, and mass in term neonates with symmetric and asymmetric intrauterine growth restriction. Cardiol Young. 2015;25:301–7.

    PubMed 

    Google Scholar 

  • Okah FA, Hoff GL, Dew PC, Cai J. Ponderal index of the newborn: effect of smoking on the index of the small-for-gestational-age infant. Am J Perinatol. 2010;27:353–60.

    PubMed 

    Google Scholar 

  • Ergin H, Kiliç I, Gürses DK, Kilinç K. Serum lipid peroxidation levels in small-for-gestational-age babies. Turk J Pediatr. 2001;43:215–7.

    CAS 
    PubMed 

    Google Scholar 

  • Walther FJ, Ramaekers LH. Neonatal morbidity of S.G.A. infants in relation to their nutritional status at birth. Acta Paediatr Scand. 1982;71:437–40.

    CAS 
    PubMed 

    Google Scholar 

  • Rodríguez G, Samper MP, Ventura P, Moreno LA, Olivares JL, Pérez-González JM. Gender differences in newborn subcutaneous fat distribution. Eur J Pediatr. 2004;163:457–61.

    PubMed 

    Google Scholar 

  • Sankilampi U, Hannila ML, Saari A, Gissler M, Dunkel L. New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Ann Med. 2013;45(5–6):446–54.

    PubMed 

    Google Scholar 

  • De Grauw TJ, Hopkins B. Severity of growth retardation and physical condition at birth in small for gestational age infants. Biol Neonate. 1991;60:176–83.

    PubMed 

    Google Scholar 

  • Guaran RL, Wein P, Sheedy M, Walstab J, Beischer NA. Update of growth percentiles for infants born in an Australian population. Aust N Z J Obstet Gynaecol. 1994;34:39–50.

    CAS 
    PubMed 

    Google Scholar 

  • Sayers S, Mackerras D, Halpin S, Singh G. Growth outcomes for Australian Aboriginal children aged 11 years who were born with intrauterine growth retardation at term gestation. Paediatr Perinat Epidemiol. 2007;21:411–7.

    PubMed 

    Google Scholar 

  • Leão Filho JC, de Lira PI. Study of body proportionality using Rohrer s ponderal index and degree of intrauterine growth retardation in full-term neonates. Cadernos De Saude Publica. 2003;19:1603–10.

    PubMed 

    Google Scholar 

  • Silva IBD, Cunha P, Linhares MBM, Martinez FE, Camelo JS Júnior. Neurobehavior of preterm, small and appropriate for gestational age newborn infants. Revista Paulista De Pediatria: Orgao Oficial Da Sociedade De Pediatria De Sao Paulo. 2018;36:407–14.

    PubMed 

    Google Scholar 

  • Lubchenco LO, Hansman C, Dressler M, Boyd E. Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics. 1963;32:793–800.

    CAS 
    PubMed 

    Google Scholar 

  • Kishan J, Elzouki AY, Mir NA, Faquih AM. Ponderal index as a predictor of neonatal morbidity in small for gestational age infants. Indian J Pediatr. 1985;52:133–7.

    CAS 
    PubMed 

    Google Scholar 

  • Roje D, Banovic I, Tadin I, Vucinović M, Capkun V, Barisic A, et al. Gestational age–the most important factor of neonatal ponderal index. Yonsei Med J. 2004;45:273–80.

    PubMed 

    Google Scholar 

  • Tayman C, Öztekin O, Serkant U, Yakut I, Aydemir S, Kosus A. Ischemia-modified albumin may be a novel marker for predicting neonatal neurologic injury in small-for-gestational-age infants in addition to neuron-specific enolase. Am J Perinatol. 2017;34:349–58.

    PubMed 

    Google Scholar 

  • Van der Vlugt ER, Verburg PE, Leemaqz SY, McCowan LME, Poston L, Kenny LC, et al. Sex- and growth-specific characteristics of small for gestational age infants: a prospective cohort study. Biol Sex Differ. 2020;11: 25.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolfe HM, Brans YW, Gross TL, Bhatia RK, Sokol RJ. Correlation of commonly used measures of intrauterine growth with estimated neonatal body fat. Biol Neonate. 1990;57:167–71.

    CAS 
    PubMed 

    Google Scholar 

  • Helgertz J, Vågerö D. Small for gestational age and adulthood risk of disability pension: the contribution of childhood and adulthood conditions. Soc Sci Med. 2014;119:249–57.

    PubMed 

    Google Scholar 

  • Villar J, de Onis M, Kestler E, Bolaños F, Cerezo R, Bernedes H. The differential neonatal morbidity of the intrauterine growth retardation syndrome. Am J Obstet Gynecol. 1990;163:151–7.

    CAS 
    PubMed 

    Google Scholar 

  • Yau KI, Chang MH. Growth and body composition of preterm, small-for-gestational-age infants at a postmenstrual age of 37–40 weeks. Early Hum Dev. 1993;33:117–31.

    CAS 
    PubMed 

    Google Scholar 

  • Sumners JE, Findley GM, Ferguson KA. Evaluation methods for intrauterine growth using neonatal fat stores instead of birth weight as outcome measures: fetal and neonatal measurements correlated with neonatal skinfold thicknesses. J Clin Ultrasound. 1990;18:9–14.

    CAS 
    PubMed 

    Google Scholar 

  • Yau KI, Chang MH. Weight to length ratio–a good parameter for determining nutritional status in preterm and full-term newborns. Acta Paediatr (Oslo Norway: 1992). 1993;82:427–9.

    CAS 

    Google Scholar 

  • Johnson TS, Engstrom JL, Gelhar DK. Intra- and interexaminer reliability of anthropometric measurements of term infants. J Pediatr Gastroenterol Nutr. 1997;24:497–505.

    CAS 
    PubMed 

    Google Scholar 

  • Doull IJ, McCaughey ES, Bailey BJ, Betts PR. Reliability of infant length measurement. Arch Dis Child. 1995;72:520–1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simič Klarić A, Tomić Rajić M, Tesari Crnković H. Timing of head circumference measurement in newborns. Clin Pediatr (Phila). 2014;53:456–9.

    PubMed 

    Google Scholar 

  • Dieks J-K, Jünemann L, Hensel KO, Bergmann C, Schmidt S, Quast A, et al. Stereophotogrammetry can feasibly assess ‘physiological’ longitudinal three-dimensional head development of very preterm infants from birth to term. Sci Rep. 2022;12:8940.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fattal-Valevski A, Leitner Y, Kutai M, Tal-Posener E, Tomer A, Lieberman D, et al. Neurodevelopmental outcome in children with intrauterine growth retardation: a 3-year follow-up. J Child Neurol. 1999;14:724–7.

    CAS 
    PubMed 

    Google Scholar 

  • Smits I, Hoftiezer L, van Dillen J, Hogeveen M. Neonatal hypoglycaemia and body proportionality in small for gestational age newborns: a retrospective cohort study. Eur J Pediatr. 2022;181:3655–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Streja E, Miller JE, Wu C, Bech BH, Pedersen LH, Schendel DE, et al. Disproportionate fetal growth and the risk for congenital cerebral palsy in singleton births. PLoS One. 2015;10:e0126743.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading