Association of knockdown resistance mutations with pyrethroid resistance in Aedes aegypti, a major arbovirus vector in Cameroon | Parasites & Vectors

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet. 2024;403:667–82.

    CAS 
    PubMed 

    Google Scholar 

  • Dalpadado R, Amarasinghe D, Gunathilaka N, Ariyarathna N. Bionomic aspects of dengue vectors Aedes aegypti and Aedes albopictus at domestic settings in urban, suburban and rural areas in Gampaha District, Western Province of Sri Lanka. Parasit Vectors. 2022;15:148.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dzul-Manzanilla F, Ibarra-López J, Bibiano Marín W, Martini-Jaimes A, Leyva JT, Correa-Morales F, et al. Indoor resting behavior of Aedes aegypti (diptera: Culicidae) in Acapulco, Mexico. J Med Entomol. 2017;54:501–4.

    PubMed 

    Google Scholar 

  • Bitsindou P, Bantsimba-Ndziona M, Lenga A. Distribution actuelle et caractérisations bioécologiques d’Aedes aegypti et d’Aedes albopictus dans deux arrondissements de Brazzaville. Bulletin de la Société de Pathologie Exoique. 2018;111:301–8.

    CAS 

    Google Scholar 

  • Kamgang B, Vazeille M, Tedjou AN, Wilson-Bahun TA, Yougang AP, Mousson L, et al. Risk of dengue in Central Africa: vector competence studies with Aedes aegypti and Aedes albopictus (Diptera: Culicidae) populations and dengue 2 virus. PLoS Negl Trop Dis. 2019;13:e0007985.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamgang B, Vazeille M, Tedjou A, Yougang AP, Wilson-Bahun TA, Mousson L, et al. Different populations of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Central Africa are susceptible to Zika virus infection. PLOS Negl Trop Dis. 2020;14:e0008163. https://doi.org/10.1371/journal.pntd.0008163.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamgang B, Vazeille M, Yougang AP, Tedjou AN, Wilson-Bahun TA, Mousson L, et al. Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit yellow fever virus in urban areas in Central Africa. Emerg Microbes Infect. 2019;8:1636–41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Pesticides and their application: for the control of vectors and pests of public health importance. Geneva: World Health Organization; 2006.

    Google Scholar 

  • Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, et al. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ. 2006;332:1247–52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker N, Ludwig M, Su T. Lack of resistance in Aedes vexans field populations after 36 years of Bacillus thuringiensis subsp. israelensis applications in the Upper Rhine Valley, Germany. J Am Mosquito Control Assoc. 2018;34:154–7.

    Google Scholar 

  • Marcombe S, Darriet F, Tolosa M, Agnew P, Duchon S, Etienne M, et al. Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean). PLoS Negl Trop Dis. 2011;5:e1202.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Hugo LE, et al. Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. Pest Manag Sci. 2023;79:2846–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ranson H, Burhani J, Lumjuan N, Black IV WC. Insecticide resistance in dengue vectors. TropIKA net [online]. 2009;1:1.

  • Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Corbel V, Achee NL, Chandre F, Coulibaly MB, Dusfour I, Fonseca DM, et al. Tracking insecticide resistance in mosquito vectors of arboviruses: the worldwide insecticide resistance network (WIN). PLoS Negl Trop Dis. 2016;10:e0005054.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012;104:126–31.

    CAS 

    Google Scholar 

  • Corbel V, Kont MD, Ahumada ML, Andréo L, Bayili B, Bayili K, et al. A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study. Parasit Vectors. 2023;16:21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samal RR, Kumar S. Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Int J Trop Insect Sci. 2021;41:809–20.

    Google Scholar 

  • Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Broderick NA, et al. Cuticular profiling of insecticide resistant Aedes aegypti. Sci Rep. 2023;13:10154.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paeporn P, Supaphathom K, Sathantriphop S, Chareonviritaphap T, Yaicharoen R. Behavioural responses of deltamethrin-and permethrin-resistant strains of aedes aegypti when exposed to permethrin in an excito-repellency test system. 2007.

  • Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H, et al. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Sci Rep. 2016;6:24707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daborn PJ, Le Goff G. The genetics and genomics of insecticide resistance. Trends Genet. 2004;20:163–70.

    PubMed 

    Google Scholar 

  • Sombie A, Saiki E, Yameogo F, Sakurai T, Shirozu T, Fukumoto S, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgande (Ouagadougou), Burkina Faso. Trop Med Health. 2019;47:2. https://doi.org/10.1186/s41182-018-0134-5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kushwah RBS, Dykes CL, Kapoor N, Adak T, Singh OP. Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti. PLoS Negl Trop Dis. 2015;9:e3332.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haddi K, Tomé HV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Sci Rep. 2017;7:46549.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akhir MAM, Wajidi MFF, Lavoué S, Azzam G, Jaafar IS, Awang Besar NAU, et al. Knockdown resistance (kdr) gene of Aedes aegypti in Malaysia with the discovery of a novel regional specific point mutation A1007G. Parasit Vectors. 2022;15:122. https://doi.org/10.1186/s13071-022-05192-z.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maiga A-A, Sombié A, Zanré N, Yaméogo F, Iro S, Testa J, et al. First report of V1016I, F1534C and V410L kdr mutations associated with pyrethroid resistance in Aedes aegypti populations from Niamey, Niger. PLoS ONE. 2024;19:e0304550.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yougang AP, Keumeni CR, Wilson-Bahun TA, Tedjou AN, Njiokou F, Wondji C, et al. Spatial distribution and insecticide resistance profile of Aedes aegypti and Aedes albopictus in Douala, the most important city of Cameroon. PLoS ONE. 2022;17:e0278779.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yougang AP, Kamgang B, Tedjou AN, Wilson-Bahun TA, Njiokou F, Wondji CS. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS ONE. 2020;15:e0234572.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yougang AP, Kamgang B, Bahun TAW, Tedjou AN, Nguiffo-Nguete D, Njiokou F, et al. First detection of F1534C knockdown resistance mutation in Aedes aegypti (Diptera: Culicidae) from Cameroon. Infect Dis Poverty. 2020;9:1–12.

    Google Scholar 

  • Montgomery M, Harwood JF, Yougang AP, Wilson-Bahun TA, Tedjou AN, Keumeni CR, et al. Spatial distribution of insecticide resistant populations of Aedes aegypti and Ae. albopictus and first detection of V410L mutation in Ae. aegypti from Cameroon. Infect Dis Poverty. 2022;11:1–13.

    Google Scholar 

  • Kamgang B, Yougang AP, Tchoupo M, Riveron JM, Wondji C. Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaounde, the capital city of Cameroon. Parasit Vectors. 2017;10:469. https://doi.org/10.1186/s13071-017-2408-x.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Djiappi-Tchamen B, Nana-Ndjangwo MS, Mavridis K, Talipouo A, Nchoutpouen E, Makoudjou I, et al. Analyses of insecticide resistance genes in Aedes aegypti and Aedes albopictus mosquito populations from Cameroon. Genes. 2021;12:828.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jupp PG. Mosquitoes of Southern Africa: culicinae and toxorhynchitinae. Hartbeespoort: Ekogilde Publishers; 1996.

    Google Scholar 

  • Edwards F. Mosquitoes of the Ethiopian Region: Culicine Adults and Pupae. Mosquitoes of the Ethiopian Region: Culicine Adults and Pupae. 1941.

  • Marcombe S, Mathieu RB, Pocquet N, Riaz M-A, Poupardin R, Sélior S, et al. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS ONE. 2012;7:e30989.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. 2022.

  • Ishak IH, Jaal Z, Ranson H, Wondji CS. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit Vectors. 2015;8:1–13.

    Google Scholar 

  • Livak KJ. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984;107:611–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores A, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16:785–98.

    CAS 
    PubMed 

    Google Scholar 

  • Saavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Lenhart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8:6747.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leong C-S, Vythilingam I, Liew JW-K, Wong M-L, Wan-Yusoff WS, Lau Y-L. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasit Vectors. 2019;12:1–17.

    CAS 

    Google Scholar 

  • Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series: 1999. [London]: Information Retrieval Ltd. 1999; 1c1979-c2000:e0007615.

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.

    CAS 
    PubMed 

    Google Scholar 

  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu Y-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9.

    CAS 
    PubMed 

    Google Scholar 

  • dos Santos A, Cabezas M, Tavares A, Xavier R, Mii B. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics. 2016;32:627–8.

    Google Scholar 

  • Kamgang B, Marcombe S, Chandre F, Nchoutpouen E, Nwane P, Etang J, et al. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasit Vectors. 2011;4:1–8.

    Google Scholar 

  • Kamgang B, Wilson-Bahun TA, Yougang AP, Lenga A, Wondji CS. Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infect Dis Poverty. 2020;9:23. https://doi.org/10.1186/s40249-020-0637-2.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayres CF, Seixas G, Borrego S, Marques C, Monteiro I, Marques CS, et al. The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa. PLoS Negl Trop Dis. 2020;14:e0008216.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badolo A, Sombié A, Pignatelli PM, Sanon A, Yaméogo F, Wangrawa DW, et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl Trop Dis. 2019;13:e0007439.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sene NM, Mavridis K, Ndiaye EH, Diagne CT, Gaye A, Ngom EHM, et al. Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS Negl Trop Dis. 2021;15:e0009393.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwame Amlalo G, Akorli J, Etornam Akyea-Bobi N, Sowa Akporh S, Aqua-Baidoo D, Opoku M, et al. Evidence of high frequencies of insecticide resistance mutations in Aedes aegypti (Culicidae) mosquitoes in urban Accra, Ghana: implications for insecticide-based vector control of Aedes-borne Arboviral diseases. J Med Entomol. 2022;59:2090–101.

    PubMed 

    Google Scholar 

  • Kamgang B, Acântara J, Tedjou A, Keumeni C, Yougang A, Ancia A, et al. Entomological surveys and insecticide susceptibility profile of Aedes aegypti during the dengue outbreak in Sao Tome and Principe in 2022. PLoS Negl Trop Dis. 2024;18:e0011903.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ngoagouni C, Kamgang B, Brengues C, Yahouedo G, Paupy C, Nakouné E, et al. Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasit Vectors. 2016;9:1–13.

    Google Scholar 

  • Odjo EM, Akpodji CS, Djènontin A, Salako AS, Padonou GG, Adoha CJ, et al. Did the prolonged residual efficacy of clothianidin products lead to a greater reduction in vector populations and subsequent malaria transmission compared to the shorter residual efficacy of pirimiphos-methyl? Malar J. 2024;23:119.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Che-Mendoza A, González-Olvera G, Medina-Barreiro A, Arisqueta-Chablé C, Herrera-Bojórquez J, Bibiano-Marín W, et al. Residual efficacy of the neonicotinoid insecticide clothianidin against pyrethroid-resistant Aedes aegypti. Pest Manag Sci. 2023;79:638–44. https://doi.org/10.1002/ps.7231.

    CAS 
    PubMed 

    Google Scholar 

  • Toé HK, Zongo S, Guelbeogo MW, Kamgang B, Viana M, Tapsoba M, et al. Multiple insecticide resistance and first evidence of V410L kdr mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso. Med Vet Entomol. 2022;36:309–19.

    PubMed 

    Google Scholar 

  • Sombié A, Ouédraogo WM, Oté M, Saiki E, Sakurai T, Yaméogo F, et al. Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations. Parasit Vectors. 2023;16:137.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernandez JR, Liu S, Fredregill CL, Pietrantonio PV. Impact of the V410L kdr mutation and co-occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA. PLoS Negl Trop Dis. 2023;17:e0011033.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Granada Y, Mejía-Jaramillo AM, Strode C, Triana-Chavez O. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λ-cyhalothrin in Colombia. Insects. 2018;9:23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdulai A, Owusu-Asenso CM, Akosah-Brempong G, Mohammed AR, Sraku IK, Attah SK, et al. Insecticide resistance status of Aedes aegypti in southern and northern Ghana. Parasit Vectors. 2023;16:135.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading