Baum A. Stress, intrusive imagery, and chronic distress. Health Psychol. 1990;9(6):653–75.
Google Scholar
Stephens MAC, Wand GS. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. PubMed. 2012;34(4):468–83.
Davis J, Fournakis N, Ellison JM. Ketogenic diet for the treatment and prevention of dementia: A review. J Geriatr Psychiatr Neurol. 2020;34(1):3–10.
Murphy PA, Likhodii S, Nylen K, Burnham WM. The antidepressant properties of the ketogenic diet. Biol Psychiatry. 2004;56(12):981–3.
Google Scholar
Tieu K, Périer C, Caspersen C, Teismann P, Wu D, et al. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest. 2003;112(6):892–901.
Google Scholar
Masood W, Annamaraju P, Khan Suheb MZ et al. Ketogenic Diet. StatPearls. 2023. https://www.ncbi.nlm.nih.gov/books/NBK499830/. Accessed 2024 Jan.
Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metabol. 2017;25(2):262–84.
Google Scholar
Cicero AFG, Benelli M, Brancaleoni M, Dainelli G, Merlini D, Negri R. Middle and Long-Term impact of a very Low-Carbohydrate ketogenic diet on cardiometabolic factors: A Multi-Center, Cross-Sectional, clinical study. High Blood Press Cardiovasc Prev. 2015;22(4):389–94.
Google Scholar
El-Rashidy OF, El-Baz F, Gendy YGE, Khalaf RI, Reda DJ, Saad K. Ketogenic diet versus gluten free casein free diet in autistic children: a case-control study. Metab Brain Dis. 2017;32(6):1935–41.
Google Scholar
Wong K, Raffray M, Roy-Fleming A, Blunden S, Brazeau A. Ketogenic diet as a normal way of eating in adults with type 1 and type 2 diabetes: A qualitative study. Can J Diabetes. 2020;45(2):137–43.
Google Scholar
Yancy WS, Olsen MK, Guyton JR, Bakst RP, Westman EA. Low-Carbohydrate, ketogenic diet versus a Low-Fat diet to treat obesity and hyperlipidemia. Ann Intern Med. 2004;140(10):769.
Google Scholar
Douris N, Desai BN, Fisher FM, Cisu T, Fowler AJ, Zarebidaki E, et al. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice. Mol Metabolism. 2017b;6(8):854–62.
Google Scholar
Brownlow M, Jung SY, Moore R, Bechmann N, Jankord R. Nutritional ketosis affects metabolism and behavior in Sprague-Dawley rats in both control and chronic stress environments. Front Mol Neurosci. 2017;10:129.
Google Scholar
Polito R, Messina G, Valenzano A, Scarinci A, Villano I, Monda M, Porro C, Pisanelli D, Monda V, Messina A. The role of very low calorie ketogenic diet in sympathetic activation through cortisol secretion in male obese population. J Clin Med. 2021;10(18):4230.
Google Scholar
Garner S, Davies E, Barkus E, Kraeuter A. Ketogenic diet has a positive association with mental and emotional well-being in the general population. Nutrition. 2024;124:112420.
Google Scholar
Sahagun E, Ward L, Kinzig KP. Attenuation of stress-induced weight loss with a ketogenic diet. Physiol Behav. 2019;212:112654.
Google Scholar
Kubera B, Hubold C, Wischnath H, Zug S, Peters A. Rise of ketone bodies with psychosocial stress in normal weight men. Psychoneuroendocrinology. 2014;45:43–8.
Google Scholar
Sato S, Yu Z, Sakai M, Motoike IN, Saigusa D, Hirayama R, et al. Decreased β-hydroxybutyrate and ketogenic amino acid levels in depressed human adults. Eur J Neuroscience/EJN Eur J Neurosci. 2023;57(6):1018–32.
Google Scholar
Ji J, Fotros D, Sohouli MH, Velu P, Fatahi S, Liu Y. The effect of a ketogenic diet on inflammation-related markers: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2024;83(1):40–58.
Yamanashi T, Iwata M, Kamiya N, Tsunetomi K, Kajitani N, Wada N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep. 2017;7(1):21.
Sprankle KW, Knappenberger MA, Locke EJ, Thompson JH, Vinovrski MF, Knapsack K, Kolwicz SC. Sex- and Age-Specific differences in mice fed a ketogenic diet. Nutrients. 2024;16(16):2731.
Google Scholar
Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehavioral Reviews. 2010;35(3):565–72.
Caballero-Hernandez D, Najera-Valderrabano D, Valadez-Lira A, Franco-Molina M, Gomez-Flores R, Tamez-Guerra P, Tamez-Guerra R, Rodríguez-Padilla C. Alterations of antitumor and metabolic responses in L5178Y-R lymphoma-bearing mice after only 30-minute daily chronic stress exposure. Exp Oncol. 2017;39:4, 276–80.
Google Scholar
Kinzig KP, Honors MA, Hargrave SL, Davenport BM, Strader AD. Wendt, D. Sensitivity to the anorectic effects of leptin is retained in rats maintained on a ketogenic diet despite increased adiposity. Neuroendocrinology. 2010a;92(2):100–11.
Google Scholar
Sahagun E, Bachman BB, Kinzig KP. Sex-specific effects of ketogenic diet after pre-exposure to a high-fat, high-sugar diet in rats. Nutr Metabolism Cardiovasc Dis. 2021;31(3):961–71.
Google Scholar
Benedé-Ubieto R, Estévez-Vázquez O, Ramadori P, Cubero FJ, Nevzorova YA. Guidelines and considerations for metabolic tolerance tests in mice. Diabetes Metabolic Syndrome Obes. 2020;13:439–50.
Kennedy A, Pissios P, Otu HH, Xue B, Asakura K, Furukawa N, Marino FE, Liu F, Kahn BB, Libermann TA. Maratos–Flier, E. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiology-endocrinology Metabolism. 2007;292(6):E1724–39.
Google Scholar
Kinzig KP, Scott KA, Hyun J, Bi S, Moran TH. Altered hypothalamic signaling and responses to food deprivation in rats fed a Low-Carbohydrate diet. Obes Res. 2005;13(10):1672–82.
Google Scholar
Nishiguchi T, Iwata M, Kajitani N, Miura A, Matsuo R, Murakami S, et al. Stress increases blood beta-hydroxybutyrate levels and prefrontal cortex NLRP3 activity jointly in a rodent model. Neuropsychopharmacol Rep. 2021;41(2):159–67.
Google Scholar
Son H, Baek JH, Kang JS, Jung S, Chung H, et al. Acutely increased β-hydroxybutyrate plays a role in the prefrontal cortex to escape stressful conditions during the acute stress response. Biochem Biophys Res Commun. 2021;554:19–24.
Google Scholar
Cochran J, Taufalele PV, Lin KD, Zhang Y, Abel ED. Sex Differences in the Response of C57BL/6 Mice to Ketogenic Diets. 2018; Diabetes, 67.
Ruppert PM, Kersten S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol Metabolism. 2023;35(2):107–24.
Smolensky I, Zajac-Bakri K, Odermatt TS, Brégère C, Cryan JF, Guzman R, Timper K, Inta D. Sex-specific differences in metabolic hormone and adipose tissue dynamics induced by moderate low-carbohydrate and ketogenic diet. Sci Rep. 2023;13(1):16465.
Google Scholar
Mauvais-Jarvis F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biology Sex Differences. 2015; 6(1).
Murata Y, Nishio K, Mochiyama T, Konishi M, Shimada M, Ohta H, Itoh N. Fgf21 impairs adipocyte insulin sensitivity in mice fed a Low-Carbohydrate, High-Fat ketogenic diet. PLoS ONE. 2013; 8(7), e69330.
Watanabe M, Singhal G, Fisher FM, Beck TC, Morgan DA, Socciarelli F, et al. Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine. 2019;67(1):95–108.
Google Scholar
Song P, Zechner CPG, Hernandez G, Canovas JM, Xie Y, Sondhi V, et al. The hormone FGF21 stimulates water drinking in response to ketogenic diet and alcohol. Cell Metabol. 2018;27(6):1338–e13474.
Google Scholar
Griffin L, Gentile J. Ke Jia-Yu. Ketogenic Diet for Rodents: Diverse Applications for Neurological and Metabolic Diseases. Research Diets. 2020.
Moreno B, Bellido D, Sajoux I, Goday A, Saavedra D, Crujeiras AB, Casanueva FF. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine. 2014;47(3):793–805.
Google Scholar
Kinzig KP, Honors MA, Hargrave SL. 2010. Insulin Sensitivity and Glucose Tolerance Are Altered by Maintenance on a Ketogenic Diet. Endocrinology. 2010b. 151(7), 3105–3114.
Fuehrlein BS, Rutenberg MS, Silver JN, Warren MW, Theriaque DW, Duncan GE, Stacpoole PW, Brantly ML. Differential metabolic effects of saturated versus polyunsaturated fats in ketogenic diets. J Clin Endocrinology Metabolism/Journal Clin Endocrinol & Metabolism. 2004;89(4):1641–5.
Google Scholar
Denke MA. Metabolic effects of high-protein, low-carbohydrate diets. The American J Cardiol. 2001;88(1):59–61.
Google Scholar
Guo Y, Sun J, Li T, Zhang Q, Bu S, Wang Q, Lai D. Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep. 2017; 7(1).
Vagnerová K, Jágr M, Mekadim C, Ergang P, Sechovcová H, Vodička M, Olša Fliegerová K, Dvořáček V, Mrázek J, Pácha J. Profiling of adrenal corticosteroids in blood and local tissues of mice during chronic stress. Sci Rep. 2023;13(1):7278.
Google Scholar
Ding JX, Rudak PT, Inoue W, Haeryfar SM. Physical restraint mouse models to assess immune responses under stress with or without habituation. STAR Protocols. 2021. 2(4).
Michel C, Duclos M, Cabanac M, Richard D. Chronic stress reduces body fat content in both obesity-prone and obesity-resistant strains of mice. Horm Behav. 2005;48(2):172–9.
Google Scholar
Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B. (2016). Regulation of the Hypothalamic-Pituitary‐Adrenocortical Stress Response. Comprehensive Physiology. 2016; 603–621.
Thio LL, Erbayat-Altay E, Rensing N, Yamada KA. Leptin contributes to slower weight gain in juvenile rodents on a ketogenic diet. Pediatr Res. 2006;60(4):413–7.
Google Scholar
Ryan KK, Packard AEB, Larson KR, Stout J, Fourman SM, Thompson AMK, et al. Dietary manipulations that induce ketosis activate the HPA axis in male rats and mice: a potential role for fibroblast growth factor-21. Endocrinology. 2018;159(1):400–13.
Google Scholar