Multi-omics analysis of lactate metabolism gene regulation in Clonorchis sinensis-associated hepatocellular carcinoma | Parasites & Vectors

  • Guo Q, Zhu X, Beeraka NM, Zhao R, Li S, Li F, et al. Projected epidemiological trends and burden of liver cancer by 2040 based on GBD, C15 Plus, and WHO data. Sci Rep. 2024;14:28131. https://doi.org/10.1038/s41598-024-77658-2.

    Article 
    CAS 

    Google Scholar 

  • Dasgupta P, Henshaw C, Youlden DR, Clark PJ, Aitken JF, Baade PD. Global trends in incidence rates of primary adult liver cancers: a systematic review and meta-analysis. Front Oncol. 2020;10:171. https://doi.org/10.3389/fonc.2020.00171.

    Article 

    Google Scholar 

  • Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14. https://doi.org/10.1016/s0140-6736(18)30010-2.

    Article 

    Google Scholar 

  • Shetty S, Sharma N, Ghosh K. Epidemiology of hepatocellular carcinoma (hcc) in hemophilia. Crit Rev Oncol Hematol. 2016;99:129–33. https://doi.org/10.1016/j.critrevonc.2015.12.009.

    Article 

    Google Scholar 

  • Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis. Acta Trop. 2020;203:105309. https://doi.org/10.1016/j.actatropica.2019.105309.

    Article 
    CAS 

    Google Scholar 

  • Kim EM, Kwak YS, Yi MH, Kim JY, Sohn WM, Yong TS. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo. PLoS Negl Trop Dis. 2017;11:e0005614. https://doi.org/10.1371/journal.pntd.0005614.

    Article 

    Google Scholar 

  • Flores-Guerrero JL. Clonorchis sinensis and carcinogenesis risk: biomarkers and underlying pathways. In: Velázquez-Márquez N, Paredes-Juárez GA, Vallejo-Ruiz V, editors. Pathogens associated with the development of cancer in humans: omics, immunological, and pathophysiological studies. Cham: Springer Nature Switzerland; 2024. p. 257–67.

    Google Scholar 

  • Wei C, Chen J, Yu Q, Qin Y, Huang T, Liu F, et al. Clonorchis sinensis infection contributes to hepatocellular carcinoma progression via enhancing angiogenesis. PLoS Negl Trop Dis. 2024;18:e0012638. https://doi.org/10.1371/journal.pntd.0012638.

    Article 
    CAS 

    Google Scholar 

  • Smout MJ, Lin Q, Tang Z, Qin Y, Deng X, Wei C, et al. Clonorchis sinensis infection amplifies hepatocellular carcinoma stemness, predicting unfavorable prognosis. PLoS Negl Trop Dis. 2024. https://doi.org/10.1371/journal.pntd.0011906.

    Article 

    Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article 
    CAS 

    Google Scholar 

  • Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today. 2021;26:2508–14. https://doi.org/10.1016/j.drudis.2021.07.014.

    Article 
    CAS 

    Google Scholar 

  • Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, et al. The lactate receptor gpr81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 2020;39:3292–304. https://doi.org/10.1038/s41388-020-1216-5.

    Article 
    CAS 

    Google Scholar 

  • Hao Z-N, Tan X-P, Zhang Q, Li J, Xia R, Ma Z. Lactate and lactylation: dual regulators of t-cell-mediated tumor immunity and immunotherapy. Biomolecules. 2024;14:1646.

    CAS 

    Google Scholar 

  • Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: current progress and open challenges. Front Cell Dev Biol. 2022;10:972020. https://doi.org/10.3389/fcell.2022.972020.

    Article 

    Google Scholar 

  • Chen H, Li Y, Li H, Chen X, Fu H, Mao D, et al. Nbs1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 2024;631:663–9. https://doi.org/10.1038/s41586-024-07620-9.

    Article 
    CAS 

    Google Scholar 

  • Jin Z, Lu Y, Wu X, Pan T, Yu Z, Hou J, et al. The cross-talk between tumor cells and activated fibroblasts mediated by lactate/bdnf/trkb signaling promotes acquired resistance to anlotinib in human gastric cancer. Redox Biol. 2021;46:102076. https://doi.org/10.1016/j.redox.2021.102076.

    Article 
    CAS 

    Google Scholar 

  • Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, et al. Kat8-catalyzed lactylation promotes eef1a2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 2024;121:e2314128121. https://doi.org/10.1073/pnas.2314128121.

    Article 
    CAS 

    Google Scholar 

  • Guo XJ, Huang XY, Yang X, Lu JC, Wei CY, Gao C, et al. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmc/pcaf/akt axis. Cell Death Dis. 2023;14:79. https://doi.org/10.1038/s41419-022-05406-3.

    Article 
    CAS 

    Google Scholar 

  • Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, et al. Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells. Adv Sci. 2024;11:e2405975. https://doi.org/10.1002/advs.202405975.

    Article 
    CAS 

    Google Scholar 

  • Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics. 2011;27:1739–40. https://doi.org/10.1093/bioinformatics/btr260.

    Article 
    CAS 

    Google Scholar 

  • Bush SJ. Read trimming has minimal effect on bacterial snp-calling accuracy. Microbial Genom. 2020;6:mgen000434. https://doi.org/10.1099/mgen.0.000434.

    Article 

    Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.

    Article 
    CAS 

    Google Scholar 

  • Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.

    Article 
    CAS 

    Google Scholar 

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

    Article 
    CAS 

    Google Scholar 

  • Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L, et al. Using clusterprofiler to characterize multiomics data. Nat Protoc. 2024;19:3292–320. https://doi.org/10.1038/s41596-024-01020-z.

    Article 
    CAS 

    Google Scholar 

  • Langmead B. Aligning short sequencing reads with bowtie. Curr Protoc Bioinform. 2010. https://doi.org/10.1002/0471250953.bi1107s32.

    Article 

    Google Scholar 

  • Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of ngs alignment formats. Bioinformatics. 2015;31:2032–4. https://doi.org/10.1093/bioinformatics/btv098.

    Article 
    CAS 

    Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. https://doi.org/10.1038/nbt.1754.

    Article 
    CAS 

    Google Scholar 

  • Wang Q, Li M, Wu T, Zhan L, Li L, Chen M, et al. Exploring epigenomic datasets by chipseeker. Curr Protoc. 2022;2:e585. https://doi.org/10.1002/cpz1.585.

    Article 

    Google Scholar 

  • Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. Crossmap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7. https://doi.org/10.1093/bioinformatics/btt730.

    Article 
    CAS 

    Google Scholar 

  • Zhao W, Zhu L, Gong Q, Ma S, Xiong H, Su T, et al. Unidirectional alteration of methylation and hydroxymethylation at the promoters and differential gene expression in oral squamous cell carcinoma. Front Genet. 2023;14:1269084. https://doi.org/10.3389/fgene.2023.1269084.

    Article 
    CAS 

    Google Scholar 

  • Nunn A, Otto C, Stadler PF, Langenberger D. Comprehensive benchmarking of software for mapping whole genome bisulfite data: From read alignment to DNA methylation analysis. Brief Bioinform. 2022;2:e585. https://doi.org/10.1093/bib/bbab021.

    Article 

    Google Scholar 

  • Claps G, Faouzi S, Quidville V, Chehade F, Shen S, Vagner S, et al. The multiple roles of ldh in cancer. Nat Rev Clin Oncol. 2022;19:749–62. https://doi.org/10.1038/s41571-022-00686-2.

    Article 

    Google Scholar 

  • Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol. 2022;83:452–71. https://doi.org/10.1016/j.semcancer.2020.07.015.

    Article 
    CAS 

    Google Scholar 

  • Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21:151–61. https://doi.org/10.1038/s41577-020-0406-2.

    Article 
    CAS 

    Google Scholar 

  • Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating pd-l1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer. 2022;2:e585. https://doi.org/10.1136/jitc-2020-002305.

    Article 

    Google Scholar 

  • Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, et al. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun. 2023;43:455–79. https://doi.org/10.1002/cac2.12414.

    Article 

    Google Scholar 

  • Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour immune barrier in the hcc microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023;78:770–82. https://doi.org/10.1016/j.jhep.2023.01.011.

    Article 
    CAS 

    Google Scholar 

  • Tong W, Wang T, Bai Y, Yang X, Han P, Zhu L, et al. Spatial transcriptomics reveals tumor-derived spp1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med. 2024;22:840. https://doi.org/10.1186/s12967-024-05613-w.

    Article 
    CAS 

    Google Scholar 

  • Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals foxa3 and tnfr1 as key regulators of liver repopulation. Genes Dev. 2015;29:904–9. https://doi.org/10.1101/gad.258855.115.

    Article 
    CAS 

    Google Scholar 

  • Wang L, Li B, Bo X, Yi X, Xiao X, Zheng Q. Hypoxia-induced lncrna dact3-as1 upregulates pkm2 to promote metastasis in hepatocellular carcinoma through the hdac2/foxa3 pathway. Exp Mol Med. 2022;54:848–60. https://doi.org/10.1038/s12276-022-00767-3.

    Article 
    CAS 

    Google Scholar 

  • Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. Wtap facilitates progression of hepatocellular carcinoma via m6a-hur-dependent epigenetic silencing of ets1. Mol Cancer. 2019;18:127. https://doi.org/10.1186/s12943-019-1053-8.

    Article 
    CAS 

    Google Scholar 

  • Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, et al. Epigenetic regulation of ferroptosis via ets1/mir-23a-3p/acsl4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:3. https://doi.org/10.1186/s13046-021-02208-x.

    Article 
    CAS 

    Google Scholar 

  • Ozaki I, Mizuta T, Zhao G, Yotsumoto H, Hara T, Kajihara S, et al. Involvement of the ets-1 gene in overexpression of matrilysin in human hepatocellular carcinoma. Cancer Res. 2000;60:6519–25.

    CAS 

    Google Scholar 

  • Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019;20:207–20. https://doi.org/10.1038/s41576-018-0089-8.

    Article 
    CAS 

    Google Scholar 

  • Izzo LT, Wellen KE. Histone lactylation links metabolism and gene regulation. Nature. 2019;574:492–3. https://doi.org/10.1038/d41586-019-03122-1.

    Article 
    CAS 

    Google Scholar 

  • Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein ythdf2 expression in ocular melanoma. Genome Biol. 2021;22:85. https://doi.org/10.1186/s13059-021-02308-z.

    Article 
    CAS 

    Google Scholar 

  • Jeon AJ, Anene-Nzelu CG, Teo YY, Chong SL, Sekar K, Wu L, et al. A genomic enhancer signature associates with hepatocellular carcinoma prognosis. JHEP Rep: Innov Hepatol. 2023;5:100715. https://doi.org/10.1016/j.jhepr.2023.100715.

    Article 

    Google Scholar 

  • Hu S, Song A, Peng L, Tang N, Qiao Z, Wang Z, et al. H3k4me2/3 modulate the stability of rna polymerase ii pausing. Cell Res. 2023;33:403–6. https://doi.org/10.1038/s41422-023-00794-3.

    Article 
    CAS 

    Google Scholar 

  • Ji H, Zhou Y, Zhuang X, Zhu Y, Wu Z, Lu Y, et al. Hdac3 deficiency promotes liver cancer through a defect in h3k9ac/h3k9me3 transition. Cancer Res. 2019;79:3676–88. https://doi.org/10.1158/0008-5472.Can-18-3767.

    Article 
    CAS 

    Google Scholar 

  • Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Cancer. 2016;16:483–93. https://doi.org/10.1038/nrc.2016.62.

    Article 
    CAS 

    Google Scholar 

  • Lidschreiber K, Jung LA, von der Emde H, Dave K, Taipale J, Cramer P, et al. Transcriptionally active enhancers in human cancer cells. Mol Syst Biol. 2021;17:e9873. https://doi.org/10.15252/msb.20209873.

    Article 
    CAS 

    Google Scholar 

  • Ren X, Wu Y, Song T, Yang Q, Zhou Q, Lin J, et al. Clonorchis sinensis promotes intrahepatic cholangiocarcinoma progression by activating fasn-mediated fatty acid metabolism. J Gastroenterol Hepatol. 2025;40:1004–15. https://doi.org/10.1111/jgh.16879.

    Article 
    CAS 

    Google Scholar 

  • Xu L, Zhang Y, Lin Z, Deng X, Ren X, Huang M, et al. Fasn-mediated fatty acid biosynthesis remodels immune environment in clonorchis sinensis infection-related intrahepatic cholangiocarcinoma. J Hepatol. 2024;81:265–77. https://doi.org/10.1016/j.jhep.2024.03.016.

    Article 
    CAS 

    Google Scholar 

  • Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, et al. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol. 2022;12:1063423. https://doi.org/10.3389/fonc.2022.1063423.

    Article 
    CAS 

    Google Scholar 

  • Chen W, Guo L, Xu H, Dai Y, Yao J, Wang L. Nac1 transcriptional activation of ldha induces hepatitis b virus immune evasion leading to cirrhosis and hepatocellular carcinoma development. Oncogenesis. 2024;13:15. https://doi.org/10.1038/s41389-024-00515-4.

    Article 
    CAS 

    Google Scholar 

  • Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of hepatitis b virus-related hepatocellular carcinoma. Infect Agent Cancer. 2024;19:31. https://doi.org/10.1186/s13027-024-00593-4.

    Article 

    Google Scholar 

  • Wang H, Zhang Y, Du S. Integrated analysis of lactate-related genes identifies polrmt as a novel marker promoting the proliferation, migration and energy metabolism of hepatocellular carcinoma via wnt/β-catenin signaling. Am J Cancer Res. 2024;14:1316–37. https://doi.org/10.62347/zttg4319.

    Article 
    CAS 

    Google Scholar 

  • Dematei A, Fernandes R, Soares R, Alves H, Richter J, Botelho MC. Angiogenesis in schistosoma haematobium-associated urinary bladder cancer. APMIS. 2017;125:1056–62. https://doi.org/10.1111/apm.12756.

    Article 

    Google Scholar 

  • Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch. 2015;467:623–33. https://doi.org/10.1007/s00428-015-1820-x.

    Article 
    CAS 

    Google Scholar 

  • Rambau PF, Chalya PL, Jackson K. Schistosomiasis and urinary bladder cancer in north western tanzania: a retrospective review of 185 patients. Infect Agent Cancer. 2013;8:19. https://doi.org/10.1186/1750-9378-8-19.

    Article 

    Google Scholar 

  • Weintraub M, Khaled H, Zekri A, Bahnasi A, Eissa S, Venzon D, et al. P53 mutations in egyptian bladder-cancer. Int J Oncol. 1995;7:1269–74. https://doi.org/10.3892/ijo.7.6.1269.

    Article 
    CAS 

    Google Scholar 

  • Vale N, Gouveia MJ, Rinaldi G, Santos J, Santos LL, Brindley PJ, et al. The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancer. Tumour Biol. 2017;39:1010428317692247. https://doi.org/10.1177/1010428317692247.

    Article 
    CAS 

    Google Scholar 

  • Mohammed SA, Hetta HF, Zahran AM, Tolba MEM, Attia RAH, Behnsawy HM, et al. T cell subsets, regulatory t, regulatory b cells and proinflammatory cytokine profile in schistosoma haematobium associated bladder cancer: first report from upper egypt. PLoS Negl Trop Dis. 2023;17:e0011258. https://doi.org/10.1371/journal.pntd.0011258.

    Article 
    CAS 

    Google Scholar 

  • Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances hbx-initiated hepatocellular carcinogenesis via nf-κbp65/hk2 signalling. J Exp Clin Cancer Res. 2022;41:329. https://doi.org/10.1186/s13046-022-02531-x.

    Article 
    CAS 

    Google Scholar 

  • Gerresheim GK, Roeb E, Michel AM, Niepmann M. Hepatitis c virus downregulates core subunits of oxidative phosphorylation, reminiscent of the warburg effect in cancer cells. Cells. 2019;8:1410. https://doi.org/10.3390/cells8111410.

    Article 

    Google Scholar 

  • Continue Reading