Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54(1):36–46.
Google Scholar
Rosch S, Kresoja KP, Besler C, Fengler K, Schöber AR, von Roeder M, et al. Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation. 2022;146(7):506–18.
Google Scholar
Pecchia B, Samuel R, Shah V, Newman E, Gibson GT. Mechanisms ofexercise intolerance in heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev. 2025. https://doi.org/10.1007/s10741-025-10504-3.
Google Scholar
Miranda JJ, Barrientos-Gutiérrez T, Corvalan C, Hyder AA, Lazo-Porras M, Oni T, et al. Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat Med. 2019;25(11):1667–79.
Google Scholar
Shahim B, Kapelios CJ, Savarese G, Lund LH. Global public health burden of heart failure: an updated review. Card Fail Rev. 2023;9: e11.
Google Scholar
Campbell P, Rutten FH, Lee MM, Hawkins NM, Petrie MC. Heart failure with preserved ejection fraction: everything the clinician needs to know. Lancet. 2024;403(10431):1083–92.
Google Scholar
Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1): e002477.
Google Scholar
Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–95.
Google Scholar
Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E, le Roux CW, et al. Obesity and cardiovascular disease: mechanistic insights and management strategies. A joint position paper by the world heart federation and world obesity federation. Eur J Prev Cardiol. 2022;29(17):2218–37.
Google Scholar
Kenchaiah S, Chesebro JH. The epidemiologic association between obesity and heart failure. Am Coll Cardiol Ext Learn. 2017;49(8):4–6.
Google Scholar
Hong Y, Gao Z, Wei H, Wei Y, Qiu Z, Xiao J, et al. Bi-directional association of body size and composition with heart failure: a Mendelian randomization study. Int J Cardiol. 2024;407: 132069.
Google Scholar
Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023;389(12):1069–84.
Google Scholar
Kramer CM, Borlaug BA, Zile MR, Ruff D, DiMaria JM, Menon V,et al. Tirzepatide reduces LV mass and paracardiac adipose tissue in obesity-related heart failure: SUMMIT CMR substudy. J Am Coll Cardiol. 2025;85(7):699–706.
Google Scholar
Hullon D, Subeh GK, Volkova Y, Janiec K, Trach A, Mnevets R. The role of glucagon-like peptide-1 receptor (GLP-1R) agonists in enhancing endothelial function: a potential avenue for improving heart failure with preserved ejection fraction (HFpEF). Cardiovasc Diabetol. 2025;24(1):70.
Google Scholar
Hall JL, Terzic A. Heart failure transcriptome. Circ Cardiovasc Genet. 2011;4(5):469–71.
Google Scholar
Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23.
Google Scholar
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021;18(6):400–23.
Google Scholar
Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.
Walters GWM, Yeo JL, Bilak JM, Pepper C, Gulsin GS, Freeman SC, et al. The effectiveness of lifestyle interventions in heart failure with preserved ejection fraction: a systematic review and network meta-analysis. J Card Fail. 2024;30(8):994–1009.
Google Scholar
Carbone S, Lavie CJ. Disparate effects of obesity on survival and hospitalizations in heart failure with preserved ejection fraction. Int J Obes (Lond). 2020;44(7):1543–5.
Google Scholar
Hamo CE, DeJong C, Hartshorne-Evans N, Lund LH, Shah SJ, Solomon S, et al. Heart failure with preserved ejection fraction. Nat Rev Dis Primers. 2024;10(1):55.
Google Scholar
Khan MS, Fonarow GC, Khan H, Greene SJ, Anker SD, Gheorghiade M, et al. Renin-angiotensin blockade in heart failure with preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail. 2017;4(4):402–8.
Google Scholar
Castiglione V, Gentile F, Ghionzoli N, Chiriacò M, Panichella G, Aimo A, et al. Pathophysiological rationale and clinical evidence for neurohormonal modulation in heart failure with preserved ejection fraction. Card Fail Rev. 2023;9: e09.
Google Scholar
Lund LH,Benson L, Dahlström U, Edner M. Association between use of renin-angiotensin system antagonists and mortality in patients with heart failure and preserved ejection fraction. JAMA. 2012;308(20):2108–17.
Google Scholar
Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954–60.
Google Scholar
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.
Google Scholar
Peikert A, Bart BA, Vaduganathan M, Claggett BL, Kulac IJ, Kosiborod MN, et al. Contemporary use and implications of beta-blockers in patients with HFmrEF or HFpEF: the DELIVER trial. JACC Heart Fail. 2024;12(4):631–44.
Google Scholar
Salah HM, Fudim M, Al’Aref SJ, Khan MS, Almarzooq ZI, Devabhaktuni SR, et al. Meta-analysis of efficacy of sacubitril/valsartan in heart failure with preserved ejection fraction. Am J Cardiol. 2021;145:165–8.
Google Scholar
Thangaraj PM, Oikonomou EK, Dhingra LS, Aminorroaya A, Jayaram R, Suchard MA, et al. Computational phenomapping of randomized clinical trial participants to enable assessment of their real-world representativeness and personalized inference. Circ Cardiovasc Qual Outcomes. 2025. https://doi.org/10.1161/CIRCOUTCOMES.124.011306.
Google Scholar
Bozkurt B, Ezekowitz J. Substance and substrate: LVEF and sex subgroup analyses of PARAGON-HF and PARADIGM-HF trials. Circulation. 2020;141(5):362–6.
Google Scholar
Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20.
Google Scholar
Solomon SD, McMurray JJV, Vaduganathan M, Claggett B, Jhund PS, Desai AS, et al. Finerenone in Heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2024;391(16):1475–85.
Google Scholar
Stoicescu L, Crişan D, Morgovan C, Avram L, Ghibu S. Heart failure with preserved ejection fraction: the pathophysiological mechanisms behind the clinical phenotypes and the therapeutic approach. Int J Mol Sci.2024;25(2):794.
Google Scholar
Patel R, Wadid M, Makwana B, Kumar A, Khadke S, Bhatti A, et al. GLP-1 receptor agonists among patients with overweight or obesity, diabetes, and HFpEF on SGLT2 inhibitors. JACC Heart Fail. 2024;12(11):1814–26.
Google Scholar
Lam CSP, Gamble GD, Ling LH, Sim D, Leong KTG, Yeo PSD, et al. Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. Eur Heart J. 2018;39(20):1770–80.
Google Scholar
Prausmüller S, Weidenhammer A, Heitzinger G, Spinka G, Goliasch G, Arfsten H, et al. Obesity in heart failure with preserved ejection fraction with and without diabetes: risk factor or innocent bystander? Eur J Prev Cardiol. 2023;30(12):1247–54.
Google Scholar
Borlaug BA, Sharma K, Shah SJ, Ho JE. Heart failure with preserved ejection fraction. JACC. 2023;81(18):1810–34.
Google Scholar
Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The Association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9.
Google Scholar
Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018;191:29–44.
Google Scholar
Girona J, Soler O, Samino S, Junza A, Martínez-Micaelo N, García-Altares M, et al. Lipidomics reveals myocardial lipid composition in a murine model of insulin resistance induced by a high-fat diet. Int J Mol Sci. 2024;25(5):2702.
Google Scholar
Geng J, Zhang X, Guo Y, Wen H, Guo D, Liang Q, et al. Moderate-intensity interval exercise exacerbates cardiac lipotoxicity in high-fat, high-calories diet-fed mice. Nat Commun. 2025;16(1):613.
Google Scholar
Oishi Y, Manabe I. Organ system crosstalk in cardiometabolic disease in the age of multimorbidity. Front Cardiovasc Med. 2020;7:64.
Google Scholar
Atzemian N, Mohammed S, Di Venanzio L, Gorica E, Costantino S, Ruschitzka F, et al. Cardiometabolic disease management: influences from epigenetics. Epigenomics. 2025;17:463.
Google Scholar
Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, et al. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med. 2023;15(723):eadf9382.
Google Scholar
Zhang H, Zhou W, Wang X, Men H, Wang J, Xu J, et al. Exacerbation by knocking-out metallothionein gene of obesity-induced cardiac remodeling is associated with the activation of CARD9 signaling. Int J Biol Sci. 2025;21(3):1032–46.
Google Scholar
Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(3): 159262.
Google Scholar
Lu J, Zhao J, Meng H, Zhang X. Adipose Tissue-resident immune cells in obesity and type 2 diabetes. Front Immunol. 2019;10:1173.
Google Scholar
Barcia Durán JG, Das D, Gildea M, Amadori L, Gourvest M, Kaur R, et al. Immune checkpoint landscape of human atherosclerosis and influence of cardiometabolic factors. Nat Cardiovasc Res. 2024;3(12):1482–502.
Google Scholar
Baloglu I, Turkmen K, Selcuk NY, Tonbul HZ, Ozcicek A, Hamur H, et al. The relationship between visceral adiposity index and epicardial adipose tissue in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2021;129(5):390–5.
Google Scholar
Li C, Liu X, Adhikari BK, Chen L, Liu W, Wang Y, et al. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne). 2023;14:1167952.
Google Scholar
Villasante Fricke AC, Iacobellis G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int J Mol Sci. 2019;20(23):5989.
Google Scholar
van Woerden G, Gorter TM, Westenbrink BD, Willems TP, van Veldhuisen DJ, Rienstra M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail. 2018;20(11):1559–66.
Google Scholar
Janssen-Telders C, Eringa EC, de Groot JR, de Man FS, Handoko ML. The role of epicardial adipose tissue remodelling in heart failure with preserved ejection fraction. Cardiovasc Res. 2025. https://doi.org/10.1093/cvr/cvaf056.
Google Scholar
Zhou Y, Wei Y, Wang L, Wang X, Du X, Sun Z, et al. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovasc Diabetol. 2011;10:2.
Google Scholar
Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 2015;36(13):795–805a.
Google Scholar
Basurto Acevedo L, Barrera Hernández S, Fernández Muñoz MJ, Saucedo García RP, Rodríguez Luna AK, Martínez MC. An increase in epicardial fat in women is associated with thrombotic risk. Clin Investig Arterioscler. 2018;30(3):112–7.
Google Scholar
Agra RM, Teijeira-Fernández E, Pascual-Figal D, Jesús SM, Fernández-Trasancos Á, Sierra J, et al. Differential behavior between S100A9 and adiponectin in coronary artery disease. Plasma Epicardial Fat Life Sci. 2014;100(2):147–51.
Google Scholar
Whitman J, Kozaily E, Michos ED, Silverman DN, Fudim M, Mentz RJ, et al. Epicardial fat in heart failure and preserved ejection fraction: novel insights and future perspectives. Curr Heart Fail Rep. 2025;22(1):13.
Google Scholar
van Woerden G, van Veldhuisen DJ, Westenbrink BD, de Boer RA, Rienstra M, Gorter TM. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail. 2022;24(12):2238–50.
Google Scholar
Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021;23(11):1858–71.
Google Scholar
Yen CH, Lin JL, Sung KT, Su CH, Huang WH, Chen YY, et al. Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci Rep. 2021;11(1):16501.
Google Scholar
Sun Q, Güven B, Wagg CS, Almeida de Oliveira A, Silver H, Zhang L, et al. Mitochondrial fatty acid oxidation is the major source of cardiac adenosine triphosphate production in heart failure with preserved ejection fraction. Cardiovasc Res. 2024;120(4):360–71.
Google Scholar
Lamounier-Zepter V, Look C, Alvarez J, Christ T, Ravens U, Schunck W-H, et al. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction. Circ Res. 2009;105(4):326–34.
Google Scholar
Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res. 2016;118(11):1736–51.
Google Scholar
D’Arcy MS. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis. 2024;29(9–10):1415–28.
Google Scholar
Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What is the role of the inflammation in the pathogenesis of heart failure? Curr Cardiol Rep. 2020;22(11):139.
Google Scholar
Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: a review of emerging techniques. BMC Med Imaging. 2021;21(1):164.
Google Scholar
AbouEzzeddine OF, Kemp BJ, Borlaug BA, Mullan BP, Behfar A, Pislaru SV, et al. Myocardial energetics in heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(10):e006240.
Google Scholar
Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring). 2010;18(9):1695–700.
Google Scholar
Tourki B, Halade GV. Heart failure syndrome with preserved ejection fraction is a metabolic cluster of non-resolving inflammation in obesity. Front Cardiovasc Med. 2021;8: 695952.
Google Scholar
Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter-2. JACC Heart Fail. 2018;6(8):633–9.
Google Scholar
Mohammed SA, Ambrosini S, Lüscher T, Paneni F, Costantino S. Epigenetic control of mitochondrial function in the vasculature. Front Cardiovasc Med. 2020;7:28.
Google Scholar
Liu H, Huang Y, Zhao Y, Kang GJ, Feng F, Wang X, et al. Inflammatory macrophage interleukin-1β mediates high-fat diet-induced heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2023;8(2):174–85.
Google Scholar
Smolgovsky S, Bayer AL, Kaur K, Sanders E, Aronovitz M, Filipp ME, et al. Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction. J Clin Invest. 2023. https://doi.org/10.1172/JCI171874.
Google Scholar
Herold J, Kalucka J. Angiogenesis in adipose tissue: the interplay between adipose and endothelial cells. Front Physiol. 2020;11: 624903.
Google Scholar
Ong SG, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res. 2014;104(1):24–36.
Google Scholar
Fusaru AM, Pisoschi CG, Bold A, Taisescu C, Stănescu R, Hîncu M, et al. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients. Rom J Morphol Embryol. 2012;53(4):903–9.
Google Scholar
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med. 2018;125:25–35.
Google Scholar
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021;22(8):3850.
Google Scholar
Saavedra-Alvarez A, Pereyra KV, Toledo C, Iturriaga R, Del Rio R. Vascular dysfunction in HFpEF: potential role in the development, maintenance, and progression of the disease. Front Cardiovasc Med. 2022;9:1070935.
Google Scholar
Momot K, Wojciechowska M, Krauz K, Czarzasta K, Puchalska L, Zarębiński M, et al. Endoplasmic reticulum stress and expression of nitric oxide synthases in heart failure with preserved and with reduced ejection fraction—pilot study. Cardiol J. 2024;31(6):885–94.
Google Scholar
Bilak JM, Alam U, Miller CA, McCann GP, Arnold JR, Kanagala P. Microvascular dysfunction in heart failure with preserved ejection fraction: pathophysiology, assessment, prevalence and prognosis. Card Fail Rev. 2022;8: e24.
Google Scholar
Wijnen M, Duschek EJJ, Boom H, van Vliet M. The effects of antidiabetic agents on heart failure. Neth Heart J. 2022;30(2):65–75.
Google Scholar
Hsu CN, Hsuan CF, Liao D, Chang JK, Chang AJ, Hee SW, et al. Anti-diabetic therapy and heart failure: recent advances in clinical evidence and molecular mechanism. Life (Basel). 2023;13(4):1024.
Google Scholar
Yoshida Y, Shimizu I, Minamino T. Capillaries as a therapeutic target for heart failure. J Atheroscler Thromb. 2022;29(7):971–88.
Google Scholar
Wang T, Tian J, Jin Y. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci Rep. 2021;11(1):19488.
Google Scholar
Ristagno G, Fumagalli F, Bottazzi B, Mantovani A, Olivari D, Novelli D, et al. Pentraxin 3 in cardiovascular disease. Front Immunol. 2019;10:823.
Google Scholar
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2019;6:20.
Google Scholar
Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, et al. Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment with soluble guanylyl cyclase (sGC) activator. Front Physiol. 2020;11:345.
Google Scholar
Kansakar S, Guragain A, Verma D, Sharma P, Dhungana B, Bhattarai B, et al. Soluble guanylate cyclase stimulators in heart failure. Cureus. 2021;13(9): e17781.
Google Scholar
Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelialdysfunction. Front Immunol. 2018;9:294.
Google Scholar
Shen J, Liang J, Rejiepu M, Ma Z, Zhao J, Li J, et al. Analysis of immunoinfiltration and EndoMT based on TGF-β signaling pathway-related genes in acute myocardial infarction. Sci Rep. 2024;14(1):5183.
Google Scholar
Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, et al. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 2021;12(5):470.
Google Scholar
Valero-Muñoz M, Oh A, Faudoa E, Bretón-Romero R, El Adili F, Bujor A, et al. Endothelial-mesenchymal transition in heart failure with a preserved ejection fraction: insights into the cardiorenal syndrome. Circ Heart Fail. 2021;14(9): e008372.
Google Scholar
Zhang Y, Zhu Z, Wang T, Dong Y, Fan Y, Sun D. TGF-β1-containing exosomes from cardiac microvascular endothelial cells mediate cardiac fibroblast activation under high glucose conditions. Biochem Cell Biol. 2021;99(6):693–9.
Google Scholar
Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023;548: 117487.
Google Scholar
Li C, He J, Zhong X, Gan H, Xia Y. CX3CL1/CX3CR1 axis contributes to angiotensin II-induced vascular smooth muscle cell proliferation and inflammatory cytokine production. Inflammation. 2018;41(3):824–34.
Google Scholar
Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, et al. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20(18):4472.
Google Scholar
Béland S, Désy O, El Fekih R, Marcoux M, Thivierge MP, Desgagné JS, et al. Expression of class II human leukocyte antigens on human endothelial cells shows high interindividual and intersubclass heterogeneity. J Am Soc Nephrol. 2023;34(5):846–56.
Google Scholar
Yap C, Mieremet A, de Vries CJM, Micha D, de Waard V. Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693–707.
Google Scholar
Chen R, McVey DG, Shen D, Huang X, Ye S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J Am Heart Assoc. 2023;12(20): e031121.
Google Scholar
Li N, Cao Y, Li Y, Zhang K, Zhang L, Luo Q, et al. Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease. Clin Radiol. 2025;81: 106760.
Google Scholar
Zurek M, Aavik E, Mallick R, Ylä-Herttuala S. Epigenetic regulation of vascular smooth muscle cell phenotype switching in atherosclerotic artery remodeling: a mini-review. Front Genet. 2021;12: 719456.
Google Scholar
Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009;16(12):1590–8.
Google Scholar
Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J. 2018;39(47):4150–8.
Google Scholar
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, et al. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J. 2021;42(20):1940–58.
Google Scholar
Benincasa G, Pepin ME, Russo V, Cacciatore F, D’Alto M, Argiento P, et al. High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction. Basic Res Cardiol. 2025;120(2):347–61.
Google Scholar
Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.
Google Scholar
Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res. 2015;105(3):279–91.
Google Scholar
Tao H, Yang JJ, Chen ZW, Xu SS, Zhou X, Zhan HY, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology. 2014;323:42–50.
Google Scholar
Cheng W, Li X, Liu D, Cui C, Wang X. Endothelial-to-mesenchymal transition: role in cardiac fibrosis. J Cardiovasc Pharmacol Ther. 2021;26(1):3–11.
Google Scholar
Ford TJ, Corcoran D, Padmanabhan S, Aman A, Rocchiccioli P, Good R, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239–52.
Google Scholar
Bain CR, Ziemann M, Kaspi A, Khan AW, Taylor R, Trahair H, et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail. 2020;7(5):2468–78.
Google Scholar
Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, et al. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. Elife. 2022. https://doi.org/10.7554/eLife.74919.
Google Scholar
Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2023;10:1133611.
Google Scholar
Atzemian N, Dovrolis N, Ragia G, Portokallidou K, Kolios G, Manolopoulos VG. Beyond the rhythm: in silico identification of key genes and therapeutic targets in atrial fibrillation. Biomedicines. 2023;11(10):2632.
Google Scholar
Mengozzi A, Costantino S, Paneni F, Duranti E, Nannipieri M, Mancini R, et al. Targeting SIRT1 Rescues age- and obesity-induced microvascular dysfunction in ex vivo human vessels. Circ Res. 2022;131(6):476–91.
Google Scholar
Zhang Y, Mi SL, Hu N, Doser TA, Sun A, Ge J, et al. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med. 2014;71:208–20.
Google Scholar
Costantino S, Mengozzi A, Velagapudi S, Mohammed SA, Gorica E, Akhmedov A, et al. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy. Cardiovasc Diabetol. 2023;22(1):312.
Google Scholar
Costantino S, Mohammed SA, Ambrosini S, Telesca M, Mengozzi A, Walavalkar K, et al. Chromatin rewiring by SETD2 drives lipotoxic injury in cardiometabolic HFpEF. Circ Res. 2025.
Patel BM, Raghunathan S, Porwal U. Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol. 2014;728:128–34.
Google Scholar
Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM, Epstein JA. Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res. 2009;105(12):1240–7.
Google Scholar
Nomura Y, Nakano M, Woo Sung H, Han M, Pandey D. Inhibition of HDAC6 activity protects against endothelial dysfunction and Atherogenesis in vivo: a role for HDAC6 neddylation. Front Physiol. 2021;12: 675724.
Google Scholar
Mohammed SA, Gorica E, Albiero M, Karsai G, Mengozzi A, Caravaggi CM, et al. Targeting SETD7 rescues diabetes-induced impairment of angiogenic response by transcriptional repression of semaphorin 3G. Diabetes. 2025. https://doi.org/10.2337/db24-0997.
Google Scholar
Miranda JB, Lunardon G, Lima VM, de Oliveira ST, Lino CA, Jensen L, et al. Set7 deletion prevents glucose intolerance and improves the recovery of cardiac function after ischemia and reperfusion in obese female mice. Cell Physiol Biochem. 2022;56(3):293–309.
Google Scholar
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart failure with preserved ejection fraction: heterogeneous syndrome. Diverse Preclin Models Circ Res. 2022;130(12):1906–25.
Google Scholar
Zakeri R, Cowie MR. Heart failure with preserved ejection fraction: controversies, challenges and future directions. Heart. 2018;104(5):377–84.
Google Scholar
Shah SJ. Precision medicine for heart failure with preserved ejection fraction: an overview. J Cardiovasc Transl Res. 2017;10(3):233–44.
Google Scholar
Strianese O, Rizzo F,Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, et al. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes (Basel). 2020;11(7):747.
Google Scholar
Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-drugs in heart failure. Front Cardiovasc Med. 2022;9: 923014.
Google Scholar
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol. 2024;15:1405569.
Google Scholar
Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011;108(9):1122–32.
Google Scholar
Yang J, He J, Ismail M, Tweeten S, Zeng F, Gao L, et al. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol. 2019;130:36–48.
Google Scholar
Khurana I, Maxwell S, Royce S, Mathiyalagan P, Karagiannis T, Mazarakis N, et al. SAHA attenuates Takotsubo-like myocardial injury by targeting an epigenetic Ac/Dc axis. Signal Transduct Target Ther. 2021;6(1):159.
Google Scholar
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenet. 2019;11(1):102.
Jahagirdar R, Zhang H, Azhar S, Tobin J, Attwell S, Yu R, et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis. 2014;236(1):91–100.
Google Scholar
Duan Q, McMahon S, Anand P, Shah H, Thomas S, Salunga HT, et al. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci Transl Med. 2017;9(390):eaah5084.
Google Scholar
Nicholls SJ, Schwartz GG, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, et al. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study. Cardiovasc Diabetol. 2021;20(1):13.
Google Scholar
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;94:107–21.
Google Scholar
Foinquinos A, Batkai S, Genschel C, Viereck J, Rump S, Gyöngyösi M, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun. 2020;11(1):633.
Google Scholar
Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J. 2021;42(2):192–201.
Google Scholar
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027–32.
Google Scholar
Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):96.
Google Scholar
Dies RM, Jackson CN, Flanagan CJ, Sinnathamby ES, Spillers NJ, Potharaju P, et al. The evolving role of vericiguat in patients with chronic heart failure. Cureus. 2023;15(12): e49782.
Google Scholar
Di Fusco SA, Alonzo A, Aimo A, Matteucci A, Intravaia RCM, Aquilani S, et al. ANMCO position paper on vericiguat use in heart failure: from evidence to place in therapy. Eur Heart J Suppl. 2023;25(Suppl D):D278–86.
Google Scholar
Chen C, Lv J, Liu C. Vericiguat in patients with heart failure across the spectrum of left ventricular ejection fraction: a patient-level, pooled meta-analysis of VITALITY-HFpEF and VICTORIA. Front Endocrinol (Lausanne). 2024;15:1335531.
Google Scholar
Van Tassell BW, Buckley LF, Carbone S, Trankle CR, Canada JM, Dixon DL, et al. Interleukin-1 blockade in heart failure with preserved ejection fraction: rationale and design of the diastolic heart failure anakinra response trial 2 (D-HART2). Clin Cardiol. 2017;40(9):626–32.
Google Scholar
Van Tassell BW, Trankle CR, Canada JM, Carbone S, Buckley L, Kadariya D, et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2018;11(8): e005036.
Google Scholar
Alogna A, Koepp KE, Sabbah M, Espindola Netto JM, Jensen MD, Kirkland JL, et al. Interleukin-6 in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2023;11(11):1549–61.
Google Scholar
Chia YC, Kieneker LM, van Hassel G, Binnenmars SH, Nolte IM, van Zanden JJ, et al. Interleukin 6 and development of heart failure with preserved ejection fraction in the general population. J Am Heart Assoc. 2021;10(11): e018549.
Google Scholar
Petrie M, Borlaug B, Buchholtz K, Ducharme A, Hvelplund A, Ping CLS, et al. HERMES: effects of ziltivekimab versus placebo on morbidity and mortality in patients with heart failure with mildly reduced or preserved ejection fraction and systemic inflammation. J Cardiac Fail. 2024;30(1):126.
Michaëlsson E, Lund LH, Hage C, Shah SJ, Voors AA, Saraste A, et al. Myeloperoxidase inhibition reverses biomarker profiles associated with clinical outcomes in HFpEF. JACC Heart Fail. 2023;11(7):775–87.
Google Scholar
Vacca A, Wang R, Nambiar N, Capone F, Farrelly C, Mostafa A, et al. Lifestyle interventions in cardiometabolic HFpEF: dietary and exercise modalities. Heart Fail Rev. 2024. https://doi.org/10.1007/s10741-024-10439-1.
Google Scholar
La Gerche A, Howden EJ, Haykowsky MJ, Lewis GD, Levine BD, Kovacic JC. Heart failure with preserved ejection fraction as an exercise deficiency syndrome: JACC focus seminar 2/4. J Am Coll Cardiol. 2022;80(12):1177–91.
Google Scholar
Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46.
Google Scholar
Diab A, Dastmalchi LN, Gulati M, Michos ED. A heart-healthy diet for cardiovascular disease prevention: where are we now? Vasc Health Risk Manag. 2023;19:237–53.
Google Scholar
Zielinski MR, Gibbons AJ. Neuroinflammation, Sleep, and circadian rhythms. Front Cell Infect Microbiol. 2022;12: 853096.
Google Scholar
Wiech P, Würzburger L, Rossi VA, Caselli S, Schmied CM, Niederseer D. Hypertensive response to exercise, hypertension and heart failure with preserved ejection fraction (HFpEF)-a continuum of disease? Wien Klin Wochenschr. 2023;135(23–24):685–95.
Google Scholar
Lee VYJ, Houston L, Perkovic A, Barraclough JY, Sweeting A, Yu J, et al. The effect of weight loss through lifestyle interventions in patients with heart failure with preserved ejection fraction-A systematic review and meta-analysis of randomised controlled trials. Heart Lung Circ. 2024;33(2):197–208.
Google Scholar
Billingsley HE, Carbone S, Driggin E, Kitzman DW, Hummel SL. Dietary interventions in heart failure with preserved ejection fraction: a scoping review. JACC Adv. 2025;4(1): 101465.
Google Scholar