Cardiometabolic heart failure with preserved ejection fraction: from molecular signatures to personalized treatment | Cardiovascular Diabetology

  • Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54(1):36–46.

    PubMed 

    Google Scholar 

  • Rosch S, Kresoja KP, Besler C, Fengler K, Schöber AR, von Roeder M, et al. Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation. 2022;146(7):506–18.

    CAS 
    PubMed 

    Google Scholar 

  • Pecchia B, Samuel R, Shah V, Newman E, Gibson GT. Mechanisms ofexercise intolerance in heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev. 2025. https://doi.org/10.1007/s10741-025-10504-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miranda JJ, Barrientos-Gutiérrez T, Corvalan C, Hyder AA, Lazo-Porras M, Oni T, et al. Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat Med. 2019;25(11):1667–79.

    CAS 
    PubMed 

    Google Scholar 

  • Shahim B, Kapelios CJ, Savarese G, Lund LH. Global public health burden of heart failure: an updated review. Card Fail Rev. 2023;9: e11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell P, Rutten FH, Lee MM, Hawkins NM, Petrie MC. Heart failure with preserved ejection fraction: everything the clinician needs to know. Lancet. 2024;403(10431):1083–92.

    PubMed 

    Google Scholar 

  • Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1): e002477.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–95.

    PubMed 

    Google Scholar 

  • Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E, le Roux CW, et al. Obesity and cardiovascular disease: mechanistic insights and management strategies. A joint position paper by the world heart federation and world obesity federation. Eur J Prev Cardiol. 2022;29(17):2218–37.

    PubMed 

    Google Scholar 

  • Kenchaiah S, Chesebro JH. The epidemiologic association between obesity and heart failure. Am Coll Cardiol Ext Learn. 2017;49(8):4–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong Y, Gao Z, Wei H, Wei Y, Qiu Z, Xiao J, et al. Bi-directional association of body size and composition with heart failure: a Mendelian randomization study. Int J Cardiol. 2024;407: 132069.

    PubMed 

    Google Scholar 

  • Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023;389(12):1069–84.

    CAS 
    PubMed 

    Google Scholar 

  • Kramer CM, Borlaug BA, Zile MR, Ruff D, DiMaria JM, Menon V,et al. Tirzepatide reduces LV mass and paracardiac adipose tissue in obesity-related heart failure: SUMMIT CMR substudy. J Am Coll Cardiol. 2025;85(7):699–706.

    CAS 
    PubMed 

    Google Scholar 

  • Hullon D, Subeh GK, Volkova Y, Janiec K, Trach A, Mnevets R. The role of glucagon-like peptide-1 receptor (GLP-1R) agonists in enhancing endothelial function: a potential avenue for improving heart failure with preserved ejection fraction (HFpEF). Cardiovasc Diabetol. 2025;24(1):70.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hall JL, Terzic A. Heart failure transcriptome. Circ Cardiovasc Genet. 2011;4(5):469–71.

    CAS 
    PubMed 

    Google Scholar 

  • Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23.

    PubMed 

    Google Scholar 

  • Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021;18(6):400–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.

  • Walters GWM, Yeo JL, Bilak JM, Pepper C, Gulsin GS, Freeman SC, et al. The effectiveness of lifestyle interventions in heart failure with preserved ejection fraction: a systematic review and network meta-analysis. J Card Fail. 2024;30(8):994–1009.

    PubMed 

    Google Scholar 

  • Carbone S, Lavie CJ. Disparate effects of obesity on survival and hospitalizations in heart failure with preserved ejection fraction. Int J Obes (Lond). 2020;44(7):1543–5.

    PubMed 

    Google Scholar 

  • Hamo CE, DeJong C, Hartshorne-Evans N, Lund LH, Shah SJ, Solomon S, et al. Heart failure with preserved ejection fraction. Nat Rev Dis Primers. 2024;10(1):55.

    PubMed 

    Google Scholar 

  • Khan MS, Fonarow GC, Khan H, Greene SJ, Anker SD, Gheorghiade M, et al. Renin-angiotensin blockade in heart failure with preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail. 2017;4(4):402–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Castiglione V, Gentile F, Ghionzoli N, Chiriacò M, Panichella G, Aimo A, et al. Pathophysiological rationale and clinical evidence for neurohormonal modulation in heart failure with preserved ejection fraction. Card Fail Rev. 2023;9: e09.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lund LH,Benson L, Dahlström U, Edner M. Association between use of renin-angiotensin system antagonists and mortality in patients with heart failure and preserved ejection fraction. JAMA. 2012;308(20):2108–17.

    CAS 
    PubMed 

    Google Scholar 

  • Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954–60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    CAS 
    PubMed 

    Google Scholar 

  • Peikert A, Bart BA, Vaduganathan M, Claggett BL, Kulac IJ, Kosiborod MN, et al. Contemporary use and implications of beta-blockers in patients with HFmrEF or HFpEF: the DELIVER trial. JACC Heart Fail. 2024;12(4):631–44.

    CAS 
    PubMed 

    Google Scholar 

  • Salah HM, Fudim M, Al’Aref SJ, Khan MS, Almarzooq ZI, Devabhaktuni SR, et al. Meta-analysis of efficacy of sacubitril/valsartan in heart failure with preserved ejection fraction. Am J Cardiol. 2021;145:165–8.

    PubMed 

    Google Scholar 

  • Thangaraj PM, Oikonomou EK, Dhingra LS, Aminorroaya A, Jayaram R, Suchard MA, et al. Computational phenomapping of randomized clinical trial participants to enable assessment of their real-world representativeness and personalized inference. Circ Cardiovasc Qual Outcomes. 2025. https://doi.org/10.1161/CIRCOUTCOMES.124.011306.

    Article 
    PubMed 

    Google Scholar 

  • Bozkurt B, Ezekowitz J. Substance and substrate: LVEF and sex subgroup analyses of PARAGON-HF and PARADIGM-HF trials. Circulation. 2020;141(5):362–6.

    PubMed 

    Google Scholar 

  • Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20.

    CAS 
    PubMed 

    Google Scholar 

  • Solomon SD, McMurray JJV, Vaduganathan M, Claggett B, Jhund PS, Desai AS, et al. Finerenone in Heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2024;391(16):1475–85.

    CAS 
    PubMed 

    Google Scholar 

  • Stoicescu L, Crişan D, Morgovan C, Avram L, Ghibu S. Heart failure with preserved ejection fraction: the pathophysiological mechanisms behind the clinical phenotypes and the therapeutic approach. Int J Mol Sci.2024;25(2):794.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel R, Wadid M, Makwana B, Kumar A, Khadke S, Bhatti A, et al. GLP-1 receptor agonists among patients with overweight or obesity, diabetes, and HFpEF on SGLT2 inhibitors. JACC Heart Fail. 2024;12(11):1814–26.

    CAS 
    PubMed 

    Google Scholar 

  • Lam CSP, Gamble GD, Ling LH, Sim D, Leong KTG, Yeo PSD, et al. Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. Eur Heart J. 2018;39(20):1770–80.

    CAS 
    PubMed 

    Google Scholar 

  • Prausmüller S, Weidenhammer A, Heitzinger G, Spinka G, Goliasch G, Arfsten H, et al. Obesity in heart failure with preserved ejection fraction with and without diabetes: risk factor or innocent bystander? Eur J Prev Cardiol. 2023;30(12):1247–54.

    PubMed 

    Google Scholar 

  • Borlaug BA, Sharma K, Shah SJ, Ho JE. Heart failure with preserved ejection fraction. JACC. 2023;81(18):1810–34.

    PubMed 

    Google Scholar 

  • Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The Association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018;191:29–44.

    CAS 
    PubMed 

    Google Scholar 

  • Girona J, Soler O, Samino S, Junza A, Martínez-Micaelo N, García-Altares M, et al. Lipidomics reveals myocardial lipid composition in a murine model of insulin resistance induced by a high-fat diet. Int J Mol Sci. 2024;25(5):2702.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng J, Zhang X, Guo Y, Wen H, Guo D, Liang Q, et al. Moderate-intensity interval exercise exacerbates cardiac lipotoxicity in high-fat, high-calories diet-fed mice. Nat Commun. 2025;16(1):613.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oishi Y, Manabe I. Organ system crosstalk in cardiometabolic disease in the age of multimorbidity. Front Cardiovasc Med. 2020;7:64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atzemian N, Mohammed S, Di Venanzio L, Gorica E, Costantino S, Ruschitzka F, et al. Cardiometabolic disease management: influences from epigenetics. Epigenomics. 2025;17:463.

    PubMed 

    Google Scholar 

  • Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, et al. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med. 2023;15(723):eadf9382.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang H, Zhou W, Wang X, Men H, Wang J, Xu J, et al. Exacerbation by knocking-out metallothionein gene of obesity-induced cardiac remodeling is associated with the activation of CARD9 signaling. Int J Biol Sci. 2025;21(3):1032–46.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(3): 159262.

    CAS 
    PubMed 

    Google Scholar 

  • Lu J, Zhao J, Meng H, Zhang X. Adipose Tissue-resident immune cells in obesity and type 2 diabetes. Front Immunol. 2019;10:1173.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barcia Durán JG, Das D, Gildea M, Amadori L, Gourvest M, Kaur R, et al. Immune checkpoint landscape of human atherosclerosis and influence of cardiometabolic factors. Nat Cardiovasc Res. 2024;3(12):1482–502.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baloglu I, Turkmen K, Selcuk NY, Tonbul HZ, Ozcicek A, Hamur H, et al. The relationship between visceral adiposity index and epicardial adipose tissue in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2021;129(5):390–5.

    CAS 
    PubMed 

    Google Scholar 

  • Li C, Liu X, Adhikari BK, Chen L, Liu W, Wang Y, et al. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne). 2023;14:1167952.

    PubMed 

    Google Scholar 

  • Villasante Fricke AC, Iacobellis G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int J Mol Sci. 2019;20(23):5989.

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Woerden G, Gorter TM, Westenbrink BD, Willems TP, van Veldhuisen DJ, Rienstra M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail. 2018;20(11):1559–66.

    PubMed 

    Google Scholar 

  • Janssen-Telders C, Eringa EC, de Groot JR, de Man FS, Handoko ML. The role of epicardial adipose tissue remodelling in heart failure with preserved ejection fraction. Cardiovasc Res. 2025. https://doi.org/10.1093/cvr/cvaf056.

    Article 

    Google Scholar 

  • Zhou Y, Wei Y, Wang L, Wang X, Du X, Sun Z, et al. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovasc Diabetol. 2011;10:2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 2015;36(13):795–805a.

    CAS 
    PubMed 

    Google Scholar 

  • Basurto Acevedo L, Barrera Hernández S, Fernández Muñoz MJ, Saucedo García RP, Rodríguez Luna AK, Martínez MC. An increase in epicardial fat in women is associated with thrombotic risk. Clin Investig Arterioscler. 2018;30(3):112–7.

    PubMed 

    Google Scholar 

  • Agra RM, Teijeira-Fernández E, Pascual-Figal D, Jesús SM, Fernández-Trasancos Á, Sierra J, et al. Differential behavior between S100A9 and adiponectin in coronary artery disease. Plasma Epicardial Fat Life Sci. 2014;100(2):147–51.

    CAS 
    PubMed 

    Google Scholar 

  • Whitman J, Kozaily E, Michos ED, Silverman DN, Fudim M, Mentz RJ, et al. Epicardial fat in heart failure and preserved ejection fraction: novel insights and future perspectives. Curr Heart Fail Rep. 2025;22(1):13.

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Woerden G, van Veldhuisen DJ, Westenbrink BD, de Boer RA, Rienstra M, Gorter TM. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail. 2022;24(12):2238–50.

    PubMed 

    Google Scholar 

  • Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021;23(11):1858–71.

    CAS 
    PubMed 

    Google Scholar 

  • Yen CH, Lin JL, Sung KT, Su CH, Huang WH, Chen YY, et al. Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci Rep. 2021;11(1):16501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun Q, Güven B, Wagg CS, Almeida de Oliveira A, Silver H, Zhang L, et al. Mitochondrial fatty acid oxidation is the major source of cardiac adenosine triphosphate production in heart failure with preserved ejection fraction. Cardiovasc Res. 2024;120(4):360–71.

    PubMed 

    Google Scholar 

  • Lamounier-Zepter V, Look C, Alvarez J, Christ T, Ravens U, Schunck W-H, et al. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction. Circ Res. 2009;105(4):326–34.

    CAS 
    PubMed 

    Google Scholar 

  • Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res. 2016;118(11):1736–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Arcy MS. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis. 2024;29(9–10):1415–28.

    PubMed 

    Google Scholar 

  • Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What is the role of the inflammation in the pathogenesis of heart failure? Curr Cardiol Rep. 2020;22(11):139.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: a review of emerging techniques. BMC Med Imaging. 2021;21(1):164.

    PubMed 
    PubMed Central 

    Google Scholar 

  • AbouEzzeddine OF, Kemp BJ, Borlaug BA, Mullan BP, Behfar A, Pislaru SV, et al. Myocardial energetics in heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(10):e006240.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring). 2010;18(9):1695–700.

    CAS 
    PubMed 

    Google Scholar 

  • Tourki B, Halade GV. Heart failure syndrome with preserved ejection fraction is a metabolic cluster of non-resolving inflammation in obesity. Front Cardiovasc Med. 2021;8: 695952.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter-2. JACC Heart Fail. 2018;6(8):633–9.

    PubMed 

    Google Scholar 

  • Mohammed SA, Ambrosini S, Lüscher T, Paneni F, Costantino S. Epigenetic control of mitochondrial function in the vasculature. Front Cardiovasc Med. 2020;7:28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu H, Huang Y, Zhao Y, Kang GJ, Feng F, Wang X, et al. Inflammatory macrophage interleukin-1β mediates high-fat diet-induced heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2023;8(2):174–85.

    PubMed 

    Google Scholar 

  • Smolgovsky S, Bayer AL, Kaur K, Sanders E, Aronovitz M, Filipp ME, et al. Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction. J Clin Invest. 2023. https://doi.org/10.1172/JCI171874.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herold J, Kalucka J. Angiogenesis in adipose tissue: the interplay between adipose and endothelial cells. Front Physiol. 2020;11: 624903.

    PubMed 

    Google Scholar 

  • Ong SG, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res. 2014;104(1):24–36.

    CAS 
    PubMed 

    Google Scholar 

  • Fusaru AM, Pisoschi CG, Bold A, Taisescu C, Stănescu R, Hîncu M, et al. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients. Rom J Morphol Embryol. 2012;53(4):903–9.

    PubMed 

    Google Scholar 

  • Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med. 2018;125:25–35.

    CAS 
    PubMed 

    Google Scholar 

  • Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021;22(8):3850.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saavedra-Alvarez A, Pereyra KV, Toledo C, Iturriaga R, Del Rio R. Vascular dysfunction in HFpEF: potential role in the development, maintenance, and progression of the disease. Front Cardiovasc Med. 2022;9:1070935.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Momot K, Wojciechowska M, Krauz K, Czarzasta K, Puchalska L, Zarębiński M, et al. Endoplasmic reticulum stress and expression of nitric oxide synthases in heart failure with preserved and with reduced ejection fraction—pilot study. Cardiol J. 2024;31(6):885–94.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bilak JM, Alam U, Miller CA, McCann GP, Arnold JR, Kanagala P. Microvascular dysfunction in heart failure with preserved ejection fraction: pathophysiology, assessment, prevalence and prognosis. Card Fail Rev. 2022;8: e24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wijnen M, Duschek EJJ, Boom H, van Vliet M. The effects of antidiabetic agents on heart failure. Neth Heart J. 2022;30(2):65–75.

    CAS 
    PubMed 

    Google Scholar 

  • Hsu CN, Hsuan CF, Liao D, Chang JK, Chang AJ, Hee SW, et al. Anti-diabetic therapy and heart failure: recent advances in clinical evidence and molecular mechanism. Life (Basel). 2023;13(4):1024.

    CAS 
    PubMed 

    Google Scholar 

  • Yoshida Y, Shimizu I, Minamino T. Capillaries as a therapeutic target for heart failure. J Atheroscler Thromb. 2022;29(7):971–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang T, Tian J, Jin Y. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci Rep. 2021;11(1):19488.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ristagno G, Fumagalli F, Bottazzi B, Mantovani A, Olivari D, Novelli D, et al. Pentraxin 3 in cardiovascular disease. Front Immunol. 2019;10:823.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gogiraju R, Bochenek ML, Schäfer K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2019;6:20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, et al. Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment with soluble guanylyl cyclase (sGC) activator. Front Physiol. 2020;11:345.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kansakar S, Guragain A, Verma D, Sharma P, Dhungana B, Bhattarai B, et al. Soluble guanylate cyclase stimulators in heart failure. Cureus. 2021;13(9): e17781.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelialdysfunction. Front Immunol. 2018;9:294.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen J, Liang J, Rejiepu M, Ma Z, Zhao J, Li J, et al. Analysis of immunoinfiltration and EndoMT based on TGF-β signaling pathway-related genes in acute myocardial infarction. Sci Rep. 2024;14(1):5183.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, et al. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 2021;12(5):470.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valero-Muñoz M, Oh A, Faudoa E, Bretón-Romero R, El Adili F, Bujor A, et al. Endothelial-mesenchymal transition in heart failure with a preserved ejection fraction: insights into the cardiorenal syndrome. Circ Heart Fail. 2021;14(9): e008372.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Zhu Z, Wang T, Dong Y, Fan Y, Sun D. TGF-β1-containing exosomes from cardiac microvascular endothelial cells mediate cardiac fibroblast activation under high glucose conditions. Biochem Cell Biol. 2021;99(6):693–9.

    CAS 
    PubMed 

    Google Scholar 

  • Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023;548: 117487.

    CAS 
    PubMed 

    Google Scholar 

  • Li C, He J, Zhong X, Gan H, Xia Y. CX3CL1/CX3CR1 axis contributes to angiotensin II-induced vascular smooth muscle cell proliferation and inflammatory cytokine production. Inflammation. 2018;41(3):824–34.

    CAS 
    PubMed 

    Google Scholar 

  • Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, et al. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20(18):4472.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Béland S, Désy O, El Fekih R, Marcoux M, Thivierge MP, Desgagné JS, et al. Expression of class II human leukocyte antigens on human endothelial cells shows high interindividual and intersubclass heterogeneity. J Am Soc Nephrol. 2023;34(5):846–56.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yap C, Mieremet A, de Vries CJM, Micha D, de Waard V. Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693–707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen R, McVey DG, Shen D, Huang X, Ye S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J Am Heart Assoc. 2023;12(20): e031121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li N, Cao Y, Li Y, Zhang K, Zhang L, Luo Q, et al. Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease. Clin Radiol. 2025;81: 106760.

    CAS 
    PubMed 

    Google Scholar 

  • Zurek M, Aavik E, Mallick R, Ylä-Herttuala S. Epigenetic regulation of vascular smooth muscle cell phenotype switching in atherosclerotic artery remodeling: a mini-review. Front Genet. 2021;12: 719456.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009;16(12):1590–8.

    CAS 
    PubMed 

    Google Scholar 

  • Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J. 2018;39(47):4150–8.

    CAS 
    PubMed 

    Google Scholar 

  • Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, et al. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J. 2021;42(20):1940–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benincasa G, Pepin ME, Russo V, Cacciatore F, D’Alto M, Argiento P, et al. High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction. Basic Res Cardiol. 2025;120(2):347–61.

    CAS 
    PubMed 

    Google Scholar 

  • Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.

    CAS 
    PubMed 

    Google Scholar 

  • Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res. 2015;105(3):279–91.

    CAS 
    PubMed 

    Google Scholar 

  • Tao H, Yang JJ, Chen ZW, Xu SS, Zhou X, Zhan HY, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology. 2014;323:42–50.

    CAS 
    PubMed 

    Google Scholar 

  • Cheng W, Li X, Liu D, Cui C, Wang X. Endothelial-to-mesenchymal transition: role in cardiac fibrosis. J Cardiovasc Pharmacol Ther. 2021;26(1):3–11.

    CAS 
    PubMed 

    Google Scholar 

  • Ford TJ, Corcoran D, Padmanabhan S, Aman A, Rocchiccioli P, Good R, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bain CR, Ziemann M, Kaspi A, Khan AW, Taylor R, Trahair H, et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail. 2020;7(5):2468–78.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, et al. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. Elife. 2022. https://doi.org/10.7554/eLife.74919.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2023;10:1133611.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atzemian N, Dovrolis N, Ragia G, Portokallidou K, Kolios G, Manolopoulos VG. Beyond the rhythm: in silico identification of key genes and therapeutic targets in atrial fibrillation. Biomedicines. 2023;11(10):2632.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mengozzi A, Costantino S, Paneni F, Duranti E, Nannipieri M, Mancini R, et al. Targeting SIRT1 Rescues age- and obesity-induced microvascular dysfunction in ex vivo human vessels. Circ Res. 2022;131(6):476–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Mi SL, Hu N, Doser TA, Sun A, Ge J, et al. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med. 2014;71:208–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costantino S, Mengozzi A, Velagapudi S, Mohammed SA, Gorica E, Akhmedov A, et al. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy. Cardiovasc Diabetol. 2023;22(1):312.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costantino S, Mohammed SA, Ambrosini S, Telesca M, Mengozzi A, Walavalkar K, et al. Chromatin rewiring by SETD2 drives lipotoxic injury in cardiometabolic HFpEF. Circ Res. 2025.

  • Patel BM, Raghunathan S, Porwal U. Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. Eur J Pharmacol. 2014;728:128–34.

    CAS 
    PubMed 

    Google Scholar 

  • Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM, Epstein JA. Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res. 2009;105(12):1240–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nomura Y, Nakano M, Woo Sung H, Han M, Pandey D. Inhibition of HDAC6 activity protects against endothelial dysfunction and Atherogenesis in vivo: a role for HDAC6 neddylation. Front Physiol. 2021;12: 675724.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohammed SA, Gorica E, Albiero M, Karsai G, Mengozzi A, Caravaggi CM, et al. Targeting SETD7 rescues diabetes-induced impairment of angiogenic response by transcriptional repression of semaphorin 3G. Diabetes. 2025. https://doi.org/10.2337/db24-0997.

    Article 
    PubMed 

    Google Scholar 

  • Miranda JB, Lunardon G, Lima VM, de Oliveira ST, Lino CA, Jensen L, et al. Set7 deletion prevents glucose intolerance and improves the recovery of cardiac function after ischemia and reperfusion in obese female mice. Cell Physiol Biochem. 2022;56(3):293–309.

    CAS 
    PubMed 

    Google Scholar 

  • Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart failure with preserved ejection fraction: heterogeneous syndrome. Diverse Preclin Models Circ Res. 2022;130(12):1906–25.

    CAS 

    Google Scholar 

  • Zakeri R, Cowie MR. Heart failure with preserved ejection fraction: controversies, challenges and future directions. Heart. 2018;104(5):377–84.

    CAS 
    PubMed 

    Google Scholar 

  • Shah SJ. Precision medicine for heart failure with preserved ejection fraction: an overview. J Cardiovasc Transl Res. 2017;10(3):233–44.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strianese O, Rizzo F,Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, et al. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes (Basel). 2020;11(7):747.

    CAS 
    PubMed 

    Google Scholar 

  • Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-drugs in heart failure. Front Cardiovasc Med. 2022;9: 923014.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol. 2024;15:1405569.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011;108(9):1122–32.

    CAS 
    PubMed 

    Google Scholar 

  • Yang J, He J, Ismail M, Tweeten S, Zeng F, Gao L, et al. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol. 2019;130:36–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khurana I, Maxwell S, Royce S, Mathiyalagan P, Karagiannis T, Mazarakis N, et al. SAHA attenuates Takotsubo-like myocardial injury by targeting an epigenetic Ac/Dc axis. Signal Transduct Target Ther. 2021;6(1):159.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenet. 2019;11(1):102.

    Google Scholar 

  • Jahagirdar R, Zhang H, Azhar S, Tobin J, Attwell S, Yu R, et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis. 2014;236(1):91–100.

    CAS 
    PubMed 

    Google Scholar 

  • Duan Q, McMahon S, Anand P, Shah H, Thomas S, Salunga HT, et al. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci Transl Med. 2017;9(390):eaah5084.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholls SJ, Schwartz GG, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, et al. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study. Cardiovasc Diabetol. 2021;20(1):13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;94:107–21.

    CAS 
    PubMed 

    Google Scholar 

  • Foinquinos A, Batkai S, Genschel C, Viereck J, Rump S, Gyöngyösi M, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun. 2020;11(1):633.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J. 2021;42(2):192–201.

    CAS 
    PubMed 

    Google Scholar 

  • van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):96.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dies RM, Jackson CN, Flanagan CJ, Sinnathamby ES, Spillers NJ, Potharaju P, et al. The evolving role of vericiguat in patients with chronic heart failure. Cureus. 2023;15(12): e49782.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Fusco SA, Alonzo A, Aimo A, Matteucci A, Intravaia RCM, Aquilani S, et al. ANMCO position paper on vericiguat use in heart failure: from evidence to place in therapy. Eur Heart J Suppl. 2023;25(Suppl D):D278–86.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen C, Lv J, Liu C. Vericiguat in patients with heart failure across the spectrum of left ventricular ejection fraction: a patient-level, pooled meta-analysis of VITALITY-HFpEF and VICTORIA. Front Endocrinol (Lausanne). 2024;15:1335531.

    PubMed 

    Google Scholar 

  • Van Tassell BW, Buckley LF, Carbone S, Trankle CR, Canada JM, Dixon DL, et al. Interleukin-1 blockade in heart failure with preserved ejection fraction: rationale and design of the diastolic heart failure anakinra response trial 2 (D-HART2). Clin Cardiol. 2017;40(9):626–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Tassell BW, Trankle CR, Canada JM, Carbone S, Buckley L, Kadariya D, et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2018;11(8): e005036.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alogna A, Koepp KE, Sabbah M, Espindola Netto JM, Jensen MD, Kirkland JL, et al. Interleukin-6 in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2023;11(11):1549–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chia YC, Kieneker LM, van Hassel G, Binnenmars SH, Nolte IM, van Zanden JJ, et al. Interleukin 6 and development of heart failure with preserved ejection fraction in the general population. J Am Heart Assoc. 2021;10(11): e018549.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrie M, Borlaug B, Buchholtz K, Ducharme A, Hvelplund A, Ping CLS, et al. HERMES: effects of ziltivekimab versus placebo on morbidity and mortality in patients with heart failure with mildly reduced or preserved ejection fraction and systemic inflammation. J Cardiac Fail. 2024;30(1):126.

    Google Scholar 

  • Michaëlsson E, Lund LH, Hage C, Shah SJ, Voors AA, Saraste A, et al. Myeloperoxidase inhibition reverses biomarker profiles associated with clinical outcomes in HFpEF. JACC Heart Fail. 2023;11(7):775–87.

    PubMed 

    Google Scholar 

  • Vacca A, Wang R, Nambiar N, Capone F, Farrelly C, Mostafa A, et al. Lifestyle interventions in cardiometabolic HFpEF: dietary and exercise modalities. Heart Fail Rev. 2024. https://doi.org/10.1007/s10741-024-10439-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Gerche A, Howden EJ, Haykowsky MJ, Lewis GD, Levine BD, Kovacic JC. Heart failure with preserved ejection fraction as an exercise deficiency syndrome: JACC focus seminar 2/4. J Am Coll Cardiol. 2022;80(12):1177–91.

    PubMed 

    Google Scholar 

  • Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diab A, Dastmalchi LN, Gulati M, Michos ED. A heart-healthy diet for cardiovascular disease prevention: where are we now? Vasc Health Risk Manag. 2023;19:237–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zielinski MR, Gibbons AJ. Neuroinflammation, Sleep, and circadian rhythms. Front Cell Infect Microbiol. 2022;12: 853096.

    CAS 

    Google Scholar 

  • Wiech P, Würzburger L, Rossi VA, Caselli S, Schmied CM, Niederseer D. Hypertensive response to exercise, hypertension and heart failure with preserved ejection fraction (HFpEF)-a continuum of disease? Wien Klin Wochenschr. 2023;135(23–24):685–95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee VYJ, Houston L, Perkovic A, Barraclough JY, Sweeting A, Yu J, et al. The effect of weight loss through lifestyle interventions in patients with heart failure with preserved ejection fraction-A systematic review and meta-analysis of randomised controlled trials. Heart Lung Circ. 2024;33(2):197–208.

    PubMed 

    Google Scholar 

  • Billingsley HE, Carbone S, Driggin E, Kitzman DW, Hummel SL. Dietary interventions in heart failure with preserved ejection fraction: a scoping review. JACC Adv. 2025;4(1): 101465.

    PubMed 

    Google Scholar 

  • Continue Reading