Integrative multi-omics data from early development to identify the genes and cell types underlying attention-deficit/hyperactivity disorder | BMC Psychiatry

  • Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet. 2016;387(10024):1240–50.

    Google Scholar 

  • Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers. 2015;1: 15020.

    Google Scholar 

  • Biederman J, Faraone SV. Attention-deficit hyperactivity disorder. Lancet. 2005;366(9481):237–48.

    Google Scholar 

  • Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit hyperactivity disorder. Lancet. 2020;395(10222):450–62.

    Google Scholar 

  • Sultan RS, Wang S, Crystal S, Olfson M. Antipsychotic treatment among youths with attention-deficit/hyperactivity disorder. JAMA Netw Open. 2019;2(7):e197850.

    Google Scholar 

  • Sultan RS, Liu SM, Hacker KA, Olfson M. Adolescents with attention-deficit/hyperactivity disorder: adverse behaviors and comorbidity. J Adolesc Health. 2021;68(2):284–91.

    Google Scholar 

  • Fischman AJ, Madras BK. The neurobiology of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1374–6.

    Google Scholar 

  • Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13(8):537–51.

    CAS 

    Google Scholar 

  • Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24(4):562–75.

    CAS 

    Google Scholar 

  • Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51(1):63–75.

    CAS 

    Google Scholar 

  • Demontis D, Walters GB, Athanasiadis G, Walters R, Therrien K, Nielsen TT, et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet. 2023;55(2):198–208.

    CAS 

    Google Scholar 

  • Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4): e1000888.

    Google Scholar 

  • Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5.

    CAS 

    Google Scholar 

  • Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30(11):1095–106.

    CAS 

    Google Scholar 

  • Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50(4):538–48.

    CAS 

    Google Scholar 

  • Wu Y, Bi R, Zeng C, Ma C, Sun C, Li J, et al. Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine. 2019;44:530–41.

    CAS 

    Google Scholar 

  • Zhang C, Li X, Zhao L, Liang R, Deng W, Guo W, et al. Comprehensive and integrative analyses identify TYW5 as a schizophrenia risk gene. BMC Med. 2022;20(1):169.

    CAS 

    Google Scholar 

  • Wu Y, Yu XL, Xiao X, Li M, Li Y. Joint-tissue integrative analysis identified hundreds of schizophrenia risk genes. Mol Neurobiol. 2022;59(1):107–16.

    CAS 

    Google Scholar 

  • Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature. 2011;478(7370):519–23.

    CAS 

    Google Scholar 

  • Li M, Santpere G, Imamura Kawasawa Y, Evgrafov OV, Gulden FO, Pochareddy S, et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science. 2018;362(6420): eaat7615.

    CAS 

    Google Scholar 

  • Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. Neuron. 2016;89(2):248–68.

    CAS 

    Google Scholar 

  • Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X, Stein JL, et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron. 2019;103(5):785–801. e8.

    CAS 

    Google Scholar 

  • Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Baekvad-Hansen M, et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry. 2018;23(1):6–14.

    CAS 

    Google Scholar 

  • Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47(5):435–44.

    CAS 

    Google Scholar 

  • O’Brien HE, Hannon E, Hill MJ, Toste CC, Robertson MJ, Morgan JE, et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol. 2018;19(1):194.

    Google Scholar 

  • Qi T, Wu Y, Fang H, Zhang F, Liu S, Zeng J, et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat Genet. 2022;54(9):1355–63.

    CAS 

    Google Scholar 

  • Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017;546(7658):370–5.

    CAS 

    Google Scholar 

  • Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J, Steer J, et al. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat Genet. 2021;53(3):304–12.

    CAS 

    Google Scholar 

  • Fujita M, Gao Z, Zeng L, McCabe C, White CC, Ng B, et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat Genet. 2024;56(4):605–14.

    CAS 

    Google Scholar 

  • Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious orders study and rush memory and aging project. J Alzheimers Dis. 2018;64(s1):S161-89.

    Google Scholar 

  • Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362(6420): eaat8464.

    CAS 

    Google Scholar 

  • Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112(23):7285–90.

    CAS 

    Google Scholar 

  • Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016;352(6293):1586–90.

    CAS 

    Google Scholar 

  • Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7.

    CAS 

    Google Scholar 

  • 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Google Scholar 

  • Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013;9(11):e1003926.

    Google Scholar 

  • Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47(11):1228–35.

    CAS 

    Google Scholar 

  • Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet. 2018;50(4):621–9.

    CAS 

    Google Scholar 

  • de Leeuw CA, Mooij JM, Heskes T, Posthuma D. Magma: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11(4):e1004219.

    Google Scholar 

  • Trevino AE, Muller F, Andersen J, Sundaram L, Kathiria A, Shcherbina A, et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell. 2021;184(19):5053–e6923.

    CAS 

    Google Scholar 

  • Bryois J, Skene NG, Hansen TF, Kogelman LJA, Watson HJ, Liu Z, et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat Genet. 2020;52(5):482–93.

    CAS 

    Google Scholar 

  • Olislagers M, Rademaker K, Adan RAH, Lin BD, Luykx JJ. Comprehensive analyses of RNA-seq and genome-wide data point to enrichment of neuronal cell type subsets in neuropsychiatric disorders. Mol Psychiatry. 2022;27(2):947–55.

    CAS 

    Google Scholar 

  • Cameron D, Mi D, Vinh NN, Webber C, Li M, Marin O, et al. Single-nuclei RNA sequencing of 5 regions of the human prenatal brain implicates developing neuron populations in genetic risk for schizophrenia. Biol Psychiatry. 2023;93(2):157–66.

    CAS 

    Google Scholar 

  • Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5.

    CAS 

    Google Scholar 

  • de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345–61.

    Google Scholar 

  • Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci. 2016;19(11):1397–407.

    CAS 

    Google Scholar 

  • Graham AM, Marr M, Buss C, Sullivan EL, Fair DA. Understanding vulnerability and adaptation in early brain development using network neuroscience. Trends Neurosci. 2021;44(4):276–88.

    CAS 

    Google Scholar 

  • Zhou L, Zhou Y, Hang J, Wan R, Lu G, Yan C, et al. Crystal structure and biochemical analysis of the heptameric Lsm1-7 complex. Cell Res. 2014;24(4):497–500.

    CAS 

    Google Scholar 

  • Montemayor EJ, Didychuk AL, Yake AD, Sidhu GK, Brow DA, Butcher SE. Architecture of the U6 snRNP reveals specific recognition of 3’-end processed U6 snRNA. Nat Commun. 2018;9(1): 1749.

    Google Scholar 

  • Krausova M, Stanek D. SnRNP proteins in health and disease. Semin Cell Dev Biol. 2018;79:92–102.

    CAS 

    Google Scholar 

  • Jutzi D, Akinyi MV, Mechtersheimer J, Frilander MJ, Ruepp MD. The emerging role of minor intron splicing in neurological disorders. Cell Stress. 2018;2(3):40–54.

    Google Scholar 

  • Derksen A, Shih HY, Forget D, Darbelli L, Tran LT, Poitras C, et al. Variants in LSM7 impair LSM complexes assembly, neurodevelopment in zebrafish and may be associated with an ultra-rare neurological disease. HGG Adv. 2021;2(3):100034.

    CAS 

    Google Scholar 

  • Ferretti MB, Ghalei H, Ward EA, Potts EL, Karbstein K. Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nat Struct Mol Biol. 2017;24(9):700–7.

    CAS 

    Google Scholar 

  • Farrar JE, Vlachos A, Atsidaftos E, Carlson-Donohoe H, Markello TC, Arceci RJ, et al. Ribosomal protein gene deletions in Diamond-Blackfan anemia. Blood. 2011;118(26):6943–51.

    CAS 

    Google Scholar 

  • Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50(6):825–33.

    CAS 

    Google Scholar 

  • Sudre G, Gildea DE, Shastri GG, Sharp W, Jung B, Xu Q, et al. Mapping the cortico-striatal transcriptome in attention deficit hyperactivity disorder. Mol Psychiatry. 2023;28(2):792–800.

    CAS 

    Google Scholar 

  • Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004;9(11):984–97.

    CAS 

    Google Scholar 

  • Chatterjee M, Saha S, Shom S, Dutta N, Sinha S, Mukhopadhyay K. Glutamate receptor genetic variants affected peripheral glutamatergic transmission and treatment induced improvement of Indian ADHD probands. Sci Rep. 2023;13(1):19922.

    CAS 

    Google Scholar 

  • He J, Li J, Wei Y, He Z, Liu J, Yuan N, et al. Multiple serum anti-glutamate receptor antibody levels in clozapine-treated/naive patients with treatment-resistant schizophrenia. BMC Psychiatry. 2024;24(1): 248.

    CAS 

    Google Scholar 

  • de Klein N, Tsai EA, Vochteloo M, Baird D, Huang Y, Chen CY, et al. Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases. Nat Genet. 2023;55(3):377–88.

    Google Scholar 

  • Bhaduri A, Sandoval-Espinosa C, Otero-Garcia M, Oh I, Yin R, Eze UC, et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature. 2021;598(7879):200–4.

    CAS 

    Google Scholar 

  • Continue Reading