Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347.
Kraemer MUG, Sinka ME, Duda KA, Mylne A, Shearer FM, Brady OJ, et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci Data. 2015;2:150035.
Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4:854–63.
Google Scholar
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2019;13:e0007213.
Khormi HM, Kumar L. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX. Geospat Health. 2014;8:405–15.
Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS ONE. 2013;8:e60874.
Google Scholar
Espinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI, et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. Am J Public Health. 2019;109:387–92.
Tsheten T, Gray DJ, Clements ACA, Wangdi K. Epidemiology and challenges of dengue surveillance in the WHO South-East Asia Region. Trans R Soc Trop Med Hyg. 2021;115:583–99.
Avila Montes GA, Araujo R, Orellana HG. Situación epidemiológica del dengue en Honduras período 1991–2010. Rev Méd Hondur. 2010;78:156–62.
Zambrano LI, Rodriguez E, Espinoza-Salvado IA, Fuentes-Barahona IC, Lyra de Oliveira T, Luciano da Veiga G, et al. Spatial distribution of dengue in Honduras during 2016–2019 using a geographic information systems (GIS)-Dengue epidemic implications for public health and travel medicine. Travel Med Infect Dis. 2019;32:101517.
Zambrano LI, Vasquez-Bonilla WO, Fuentes-Barahona IC, Cláudio da Silva J, Valle-Reconco JA, Medina MT, et al. Spatial distribution of Zika in Honduras during 2016–2017 using geographic information systems (GIS)-Implications for public health and travel medicine. Travel Med Infect Dis. 2019;31:101382.
Zambrano LI, Sierra M, Lara B, Rodríguez-Núñez I, Medina MT, Lozada-Riascos CO, et al. Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using geographic information systems (GIS). J Infect Public Health. 2017;10:446–56.
Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P, et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018;12:e0006845.
En 20 municipios que acumulan el 85% de los casos de dengue se masificarán acciones-Honduras|ReliefWeb [Internet]. 2019 [cited 14 Mar 2024]. Available from: https://reliefweb.int/report/honduras/en-20-municipios-que-acumulan-el-85-de-los-casos-de-dengue-se-masificar-n-acciones
Du Y, Nomura Y, Zhorov B, Dong K. Sodium channel mutations and pyrethroid resistance in Aedes aegypti. Insects. 2016;7:60.
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.
Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, et al. Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Negl Trop Dis. 2019;13:e0007432.
Zardkoohi A, Castañeda D, Lol JC, Castillo C, Lopez F, Marín Rodriguez R, et al. Co-occurrence of kdr mutations V1016I and F1534C and its association with phenotypic resistance to pyrethroids in Aedes aegypti (Diptera: Culicidae) populations from Costa Rica. J Med Entomol. 2020;57:830–6.
Google Scholar
Linss JGB, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JBP, et al. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors. 2014;7:25.
Ishak IH, Jaal Z, Ranson H, Wondji CS. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit Vectors. 2015;8:181.
Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases. Pestic Biochem Physiol. 2016;133:1–12.
Google Scholar
Lopez-Monroy B, Gutierrez-Rodriguez SM, Villanueva-Segura OK, Ponce-Garcia G, Morales-Forcada F, Alvarez LC, et al. Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico: F-RDT and I-RDT to pyrethroids and kdr mutations in Ae. aegypti. Pest Manag Sci. 2018;74:2176–84.
Google Scholar
Maestre-Serrano R, Gomez-Camargo D, Ponce-Garcia G, Flores AE. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region. Pestic Biochem Physiol. 2014;116:63–73.
Google Scholar
Pinto J, Palomino M, Mendoza-Uribe L, Sinti C, Liebman KA, Lenhart A. Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasit Vectors. 2019;12:494.
Francis S, Saavedra-Rodriguez K, Perera R, Paine M, Black WC, Delgoda R. Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica. PLoS ONE. 2017;12:e0179673.
Rodríguez MM, Ruiz A, Piedra L, Gutierrez G, Rey J, Cruz M, et al. Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Boyeros municipality, Cuba and associated mechanisms. Acta Trop. 2020;212:105680.
Zambrano LI, Rodriguez E, Espinoza-Salvado IA, Rodríguez-Morales AJ. Dengue in Honduras and the Americas: the epidemics are back! Travel Med Infect Dis. 2019;31:101456.
Unidad de Vigilancia de la Salud-Secretaria de Salud Honduras. Boletin de arbovirosis Honduras [Internet]. [cited 13 Mar 2024]. Available from: https://www.salud.gob.hn/sshome/index.php/dengue#boletin
Abdulai A, Owusu-Asenso CM, Akosah-Brempong G, Mohammed AR, Sraku IK, Attah SK, et al. Insecticide resistance status of Aedes aegypti in southern and northern Ghana. Parasit Vectors. 2023;16:135.
Google Scholar
Consoli RAGB, Oliveira RL de. Principais mosquitos de importância sanitária no Brasil [Internet]. Editora Fiocruz; 1994 [cited 9 May 2024]. Available from: https://www.arca.fiocruz.br/handle/icict/2708
Secretaria de Salud México. Guía metodológica para la instalación y mantenimiento del insectario [Internet]. Segunda. 27 p. Available from: https://www.gob.mx/cms/uploads/attachment/file/598095/Guia_Metodologica_para_la_Instalacion_y_Mantenimiento_del__Insectario_compressed.pdf
Danis-Lozano, R, Correa-Morales F. Cría de mosquitos Culicidae y evaluación de insecticidas de uso en salud pública [Internet]. Primera. Morelos, México: Instituto Nacional de Salud Pública; 2021 [cited 9 May 2024]. 120 p. Available from: https://www.insp.mx/novedades-editoriales/cria-de-mosquitos-culicidae-y-evaluacion-de-insecticidas-de-uso-en-salud-publica
Rueda LM. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa. 2004;589:1–60.
Centers for Disease Control and Prevention. Guideline for evaluation insecticide resistance in vectors using the CDC bottle bioassay. 2012.
Contreras-Perera Y, Ponce-Garcia G, Villanueva-Segura K, Lopez-Monroy B, Rodríguez-Sanchez IP, Lenhart A, et al. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors. 2020;13:224.
Google Scholar
Harris AF, Rajatileka S, Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg. 2010;83:277–84.
Google Scholar
Al Nazawi AM, Aqili J, Alzahrani M, McCall PJ, Weetman D. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia. Parasit Vectors. 2017;10:161.
Alvarez-Jarreta J, Amos B, Aurrecoechea C, Bah S, Barba M, Barreto A, et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Res. 2024;52:D808–16.
Google Scholar
Deming R, Manrique-Saide P, Medina Barreiro A, Cardeña EUK, Che-Mendoza A, Jones B, et al. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors. 2016;9:67.
García GP, Flores AE, Fernández-Salas I, Saavedra-Rodríguez K, Reyes-Solis G, Lozano-Fuentes S, et al. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. PLoS Negl Trop Dis. 2009;3:e531.
Wright S. Systems of mating. II. The effects of inbreeding on the genetic composition of a population. Genetics. 1921;6:124–43.
Google Scholar
R Core Team (2024). R: a language and environment for Statistical Computing_R Foundation for Statistical Computing [Internet]. Vienna, Austria.; 2024. Available from: https://www.R-project.org/
World Health Organization. Global Malaria Programme. Global plan for insecticide resistance management in malaria vectors. 2012; Available from: https://apps.who.int/iris/handle/10665/44846
Pan American Health Organization. Monitoring and managing. Insecticide resistance in Aedes mosquito populations interim guidance for entomologists; 2016-PAHO/WHO | Pan American Health Organization [Internet]. 2016 [cited 11 Mar 2024]. Available from: https://www.paho.org/en/documents/monitoring-and-managing-insecticide-resistance-aedes-mosquito-populations-interim
World Health Organization. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions [internet]. Geneva; 2022 [cited 27 Feb 2023]. Available from: https://www.who.int/publications-detail-redirect/9789240051089
Solis-Santoyo F, Rodriguez AD, Penilla-Navarro RP, Sanchez D, Castillo-Vera A, Lopez-Solis AD, et al. Insecticide resistance in Aedes aegypti from Tapachula, Mexico: spatial variation and response to historical insecticide use. PLoS Negl Trop Dis. 2021;15:e0009746.
Google Scholar
Melo Costa M, Campos KB, Brito LP, Roux E, Melo Rodovalho C, Bellinato DF, et al. Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Sci Rep. 2020;10:13267.
Google Scholar
Rubio-Palis Y, Dzuris N, Sandi C, Vizcaino-Cabarrus RL, Corredor-Medina C, González JA, et al. Insecticide resistance levels and associated mechanisms in three Aedes aegypti populations from Venezuela. Mem Inst Oswaldo Cruz. 2023;118:e220210.
Google Scholar
de Garcia GA, David MR, de Martins AJ, Maciel-de-Freitas R, Linss JGB, Araújo SC, et al. The impact of insecticide applications on the dynamics of resistance: the case of four Aedes aegypti populations from different Brazilian regions. PLoS Negl Trop Dis. 2018;12:e0006227.
Gray L, Florez SD, Barreiro AM, Vadillo-Sánchez J, González-Olvera G, Lenhart A, et al. Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Sci Rep. 2018;8:12535.
Alvarez LC, Ponce G, Oviedo M, Lopez B, Flores AE. Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela. J Med Entomol. 2013;50:1031–9.
Google Scholar
Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci. 2013;110:11785–90.
Google Scholar
Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16:785–98.
Google Scholar
Saavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Lenhart A, Penilla P, et al. Parallel evolution of VGSC mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8:6747.
Google Scholar
Cosme LV, Gloria-Soria A, Caccone A, Powell JR, Martins AJ. Evolution of kdr haplotypes in worldwide populations of Aedes aegypti: independent origins of the F1534C kdr mutation. PLoS Negl Trop Dis. 2020;14:e0008219.
Google Scholar
Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014;8:e2948.
Schluep SM, Buckner EA. Metabolic resistance in permethrin-resistant Florida Aedes aegypti (Diptera: Culicidae). Insects. 2021;12:866.
Xu Q, Zhang L, Li T, Zhang L, He L, Dong K, et al. Evolutionary adaptation of the amino acid and codon usage of the mosquito sodium channel following insecticide selection in the field mosquitoes. PLoS ONE. 2012;7:e47609.
Google Scholar
Carvajal TM, Ogishi K, Yaegeshi S, Hernandez LFT, Viacrusis KM, Ho HT, et al. Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti, in metropolitan Manila, Philippines. PLoS Negl Trop Dis. 2020;14:e0008279.
Estep AS, Sanscrainte ND, Waits CM, Bernard SJ, Lloyd AM, Lucas KJ, et al. Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse). PLoS Negl Trop Dis. 2018;12:e0006544.