Altered inter-hemispheric and intra-hemispheric functional connectivity dynamics in male cigarette smokers | BMC Psychiatry

  • Corley J, Cox SR, Harris SE, Hernandez MV, Maniega SM, Bastin ME, Wardlaw JM, Starr JM, Marioni RE, Deary IJ. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian birth cohort 1936. Transl Psychiatry. 2019;9(1):248. https://doi.org/10.1038/s41398-019-0576-5.

    Article 

    Google Scholar 

  • Jha P, Peto R. Global effects of smoking, of quitting, and of taxing tobacco. N Engl J Med. 2014;370(1):60–8. https://doi.org/10.1056/NEJMra1308383.

    Article 

    Google Scholar 

  • Shen Z, Huang P, Wang C, Qian W, Yang Y, Zhang M. Cerebellar Gray matter reductions associate with decreased functional connectivity in Nicotine-Dependent individuals. Nicotine Tob Research: Official J Soc Res Nicotine Tob. 2018;20(4):440–7. https://doi.org/10.1093/ntr/ntx168.

    Article 

    Google Scholar 

  • Zhang M, Gao X, Yang Z, Han S, Zhou B, Niu X, Wang W, Wei Y, Cheng J, Zhang Y. Abnormal resting-state effective connectivity in reward network among long-term male smokers. Addict Biol. 2022;27(5):e13221. https://doi.org/10.1111/adb.13221.

    Article 

    Google Scholar 

  • Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: A comparative perspective. Physiol Rev. 2020;100(3):1019–63. https://doi.org/10.1152/physrev.00006.2019.

    Article 

    Google Scholar 

  • Mengotti P, Käsbauer A, Fink G, Vossel S. Lateralization, functional specialization, and dysfunction of attentional networks. Cortex. 2020;132:206–22. https://doi.org/10.1016/j.cortex.2020.08.022.

    Article 

    Google Scholar 

  • Froeliger B, Modlin L, Kozink R, Wang L, Garland E, Addicott M, McClernon F. Frontoparietal attentional network activation differs between smokers and nonsmokers during affective cognition. Psychiatry Res. 2013;211(1):57–63. https://doi.org/10.1016/j.pscychresns.2012.05.002.

    Article 

    Google Scholar 

  • Savjani RR, Velasquez KM, Thompson-Lake DG, Baldwin PR, Eagleman DM, De La Garza R 2nd, Salas R. Characterizing white matter changes in cigarette smokers via diffusion tensor imaging. Drug Alcohol Depend. 2014;145:134–42. https://doi.org/10.1016/j.drugalcdep.2014.10.006.

    Article 

    Google Scholar 

  • Xiang S, Jia T, Xie C, Cheng W, Chaarani B, Banaschewski T, Barker G, Bokde A, Büchel C, Desrivières S, Flor H, Grigis A, Gowland P, Brühl R, Martinot J, Martinot M, Nees F, Orfanos D, Poustka L, Hohmann S, Fröhner J, Smolka M, Vaidya N, Walter H, Whelan R, Garavan H, Schumann G, Sahakian B, Robbins T, Feng J. Association between VmPFC Gray matter volume and smoking initiation in adolescents. Nat Commun. 2023;14(1):4684. https://doi.org/10.1038/s41467-023-40079-2.

    Article 

    Google Scholar 

  • Yu D, Yuan K, Bi Y, Luo L, Zhai J, Liu B, Li Y, Cheng J, Guan Y, Xue T, Bu L, Su S, Ma Y, Qin W, Tian J, Lu X. Altered interhemispheric resting-state functional connectivity in young male smokers. Addict Biol. 2018;23(2):772–80. https://doi.org/10.1111/adb.12515.

    Article 

    Google Scholar 

  • Olga M, Jinsoo U, Daniel L, Hanzhang L, Michael PM, Yulin G. The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI. Hum Brain Mapp. 2015;36(10). https://doi.org/10.1002/hbm.22886.

  • Chen H, Mo S. Regional homogeneity changes in nicotine addicts by Resting-State fMRI. PLoS ONE. 2017;12(1):e0170143. https://doi.org/10.1371/journal.pone.0170143.

    Article 

    Google Scholar 

  • Wang C, Zhang Y, Yan C, Sun M, Cheng J. The thalamo-cortical resting state functional connectivity and abstinence-induced craving in young smokers. Brain Imaging Behav. 2018;12(5):1450–6. https://doi.org/10.1007/s11682-017-9809-5.

    Article 

    Google Scholar 

  • Yu R, Zhao L, Tian J, Qin W, Wang W, Yuan K, Li Q, Lu L. Regional homogeneity changes in heavy male smokers: a resting-state functional magnetic resonance imaging study. Addict Biol. 2013;18(4):729–31. https://doi.org/10.1111/j.1369-1600.2011.00359.x.

    Article 

    Google Scholar 

  • Zhou S, Xiao D, Peng P, Wang S, Liu Z, Qin H, Li S, Wang C. Effect of smoking on resting-state functional connectivity in smokers: an fMRI study. Respirol (Carlton Vic). 2017;22(6):1118–24. https://doi.org/10.1111/resp.13048.

    Article 

    Google Scholar 

  • Tomasi D, Volkow N. Functional connectivity hubs in the human brain. NeuroImage. 2011;57(3):908–17. https://doi.org/10.1016/j.neuroimage.2011.05.024.

    Article 

    Google Scholar 

  • Dardo T, Nora DV. Functional connectivity density mapping. Proc Natl Acad Sci U S A. 2010;107(21). https://doi.org/10.1073/pnas.1001414107.

  • Yang Z, Wen M, Wei Y, Huang H, Zheng R, Wang W, Gao X, Zhang M, Cheng J, Han S, Zhang Y. Alternations in dynamic and static functional connectivity density in chronic smokers. Front Psychiatry. 2022;13:843254. https://doi.org/10.3389/fpsyt.2022.843254.

    Article 

    Google Scholar 

  • Hare S, Adhikari B, Du X, Garcia L, Bruce H, Kochunov P, Simon J, Hong L. Local versus long-range connectivity patterns of auditory disturbance in schizophrenia. Schizophr Res. 2021;228:262–70. https://doi.org/10.1016/j.schres.2020.11.052.

    Article 

    Google Scholar 

  • Lee J, Kyeong S, Kim E, Cheon K. Abnormalities of Inter- and Intra-Hemispheric functional connectivity in autism spectrum disorders: A study using the autism brain imaging data exchange database. Front NeuroSci. 2016;10:191. https://doi.org/10.3389/fnins.2016.00191.

    Article 

    Google Scholar 

  • Elena AA, Eswar D, Sergey MP, Erik BE, Tom E, Vince DC. Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex. 2012;24(3). https://doi.org/10.1093/cercor/bhs352.

  • Hui Juan C, Rongfeng Q, Jun K, Jie Q, Qiang X, Zhiqiang Z, Yuan Z, Guang Ming L, Feng C. Altered dynamic parahippocampus functional connectivity in patients with post-traumatic stress disorder. World J Biol Psychiatry. 2020;22(3). https://doi.org/10.1080/15622975.2020.1785006.

  • Xixiu N, Jiabao Z, Mingsheng S, Linjia W, Tao X, Qian Z, Xiao W, Ziwen W, Huaqiang L, Yimei H, Qing G, Ling Z. Abnormal dynamics of functional connectivity density associated with chronic neck pain. Front Mol Neurosci. 2022;15(0). https://doi.org/10.3389/fnmol.2022.880228.

  • Victor MV, Barbara JW, Kent EH, Vince DC. The impact of combinations of alcohol, nicotine, and Cannabis on dynamic brain connectivity. Neuropsychopharmacology. 2017;43(4). https://doi.org/10.1038/npp.2017.280.

  • Guo X, Duan X, Chen H, He C, Xiao J, Han S, Fan YS, Guo J, Chen H. Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Hum Brain Mapp. 2019;41(2):419–28. https://doi.org/10.1002/hbm.24812.

    Article 

    Google Scholar 

  • Fu Z, Tu Y, Di X, Du Y, Pearlson G, Turner J, Biswal B, Zhang Z, Calhoun V. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: an application to schizophrenia. NeuroImage. 2018;180:619–31. https://doi.org/10.1016/j.neuroimage.2017.09.035.

    Article 

    Google Scholar 

  • Jiang Y, Chen Y, Zheng R, Zhou B, Wei Y, Gao A, Wei Y, Li S, Guo J, Han S, Zhang Y, Cheng J. More than just statics: Temporal dynamic changes in Inter- and intrahemispheric functional connectivity in First-Episode, Drug-Naive patients with major depressive disorder. Front Hum Neurosci. 2022;16:868135. https://doi.org/10.3389/fnhum.2022.868135.

    Article 

    Google Scholar 

  • Wen M, Yang Z, Wei Y, Huang H, Zheng R, Wang W, Gao X, Zhang M, Fang K, Zhang Y, Cheng J, Han S. More than just statics: Temporal dynamic changes of intrinsic brain activity in cigarette smoking. Addict Biol. 2021;26(6):e13050. https://doi.org/10.1111/adb.13050.

    Article 

    Google Scholar 

  • de Leon J, Diaz F, Becoña E, Gurpegui M, Jurado D, Gonzalez-Pinto A. Exploring brief measures of nicotine dependence for epidemiological surveys. Addict Behav. 2003;28(8):1481–6. https://doi.org/10.1016/s0306-4603(02)00264-2.

    Article 

    Google Scholar 

  • Wu G, Yang S, Zhu L, Lin F. Altered spontaneous brain activity in heavy smokers revealed by regional homogeneity. Psychopharmacology. 2015;232(14):2481–9. https://doi.org/10.1007/s00213-015-3881-6.

    Article 

    Google Scholar 

  • He H, Pan L, Cui Z, Sun J, Yu C, Cao Y, Wang Y, Shan G. Smoking prevalence, patterns, and cessation among adults in Hebei province, central china: implications from China National health survey (CNHS). Front Public Health. 2020;8:177. https://doi.org/10.3389/fpubh.2020.00177.

    Article 

    Google Scholar 

  • Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. Br J Addict. 1991;86(9):1119–27.

    Google Scholar 

  • Radzius A, Gallo JJ, Epstein DH, Gorelick DA, Cadet JL, Uhl GE, Moolchan ET. A factor analysis of the Fagerstrom test for nicotine dependence (FTND). Nicotine Tob Res. 2003;5(2):255–240. https://doi.org/10.1080/1462220031000073289.

    Article 

    Google Scholar 

  • Jiang H, Li S, Yang J. Work stress and depressive symptoms in fishermen with a smoking habit: A mediator role of nicotine dependence and possible moderator role of expressive suppression and cognitive reappraisal. Front Psychol. 2018;9:386. https://doi.org/10.3389/fpsyg.2018.00386.

    Article 

    Google Scholar 

  • Zhang MZ, Gao XY, Yang ZG, Wang WJ, Xu K, Cheng JL, Zhang Y. Analysis of effective connectivity in default mode network in male long-term smokers based on dynamic causal modeling. Zhonghua Yi Xue Za Zhi. 2022;102(35):2769–73. https://doi.org/10.3760/cma.j.cn112137-20220705-01486.

    Article 

    Google Scholar 

  • Merideth AA, Maggie MS, Brett F, Jed ER, Francis JM. Increased functional connectivity in an Insula-Based network is associated with improved smoking cessation outcomes. Neuropsychopharmacology. 2015;40(11). https://doi.org/10.1038/npp.2015.114.

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. https://doi.org/10.1016/j.neuroimage.2011.10.018.

    Article 

    Google Scholar 

  • Preti M, Bolton T, Van De Ville D. The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage. 2017;160:41–54. https://doi.org/10.1016/j.neuroimage.2016.12.061.

    Article 

    Google Scholar 

  • Nora L, Dimitri VDV. On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage. 2014;104(0). https://doi.org/10.1016/j.neuroimage.2014.09.007.

  • Wei Y, Han S, Chen J, Wang C, Wang W, Li H, Song X, Xue K, Zhang Y, Cheng J. Abnormal interhemispheric and intrahemispheric functional connectivity dynamics in drug-naïve first-episode schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp. 2022;43(14):4347–58. https://doi.org/10.1002/hbm.25958.

    Article 

    Google Scholar 

  • Bezdek M, Gerrig R, Wenzel W, Shin J, Pirog Revill K, Schumacher E. Neural evidence that suspense narrows attentional focus. Neuroscience. 2015;303:338–45. https://doi.org/10.1016/j.neuroscience.2015.06.055.

    Article 

    Google Scholar 

  • Palejwala A, Dadario N, Young I, O’Connor K, Briggs R, Conner A, O’Donoghue D, Sughrue M. Anatomy and white matter connections of the lingual gyrus and cuneus. World Neurosurg. 2021;151:e426–37. https://doi.org/10.1016/j.wneu.2021.04.050.

    Article 

    Google Scholar 

  • Weiner K, Zilles K. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia. 2016;83:48–62. https://doi.org/10.1016/j.neuropsychologia.2015.06.033.

    Article 

    Google Scholar 

  • Marks K, Alcorn J, Stoops W, Rush C. Cigarette cue attentional Bias in Cocaine-Smoking and Non-Cocaine-Using cigarette smokers. Nicotine & tobacco research. Official J Soc Res Nicotine Tob. 2016;18(9):1915–9. https://doi.org/10.1093/ntr/ntw026.

    Article 

    Google Scholar 

  • Wilcockson T, Pothos E, Osborne A, Crawford T. Top-down and bottom-up attentional biases for smoking-related stimuli: comparing dependent and non-dependent smokers. Addict Behav. 2021;118:106886. https://doi.org/10.1016/j.addbeh.2021.106886.

    Article 

    Google Scholar 

  • Buschschulte A, Boehler C, Strumpf H, Stoppel C, Heinze H, Schoenfeld M, Hopf J. Reward- and attention-related biasing of sensory selection in visual cortex. J Cogn Neurosci. 2014;26(5):1049–65. https://doi.org/10.1162/jocn_a_00539.

    Article 

    Google Scholar 

  • Havermans A, van Schayck O, Vuurman E, Riedel W, van den Hurk J. Nicotine deprivation elevates neural representation of smoking-related cues in object-sensitive visual cortex: a proof of concept study. Psychopharmacology. 2017;234(16):2375–84. https://doi.org/10.1007/s00213-017-4628-3.

    Article 

    Google Scholar 

  • Xin D, Yongxin Y, Peihong G, Xin Q, Guijin D, Yang Z, Xiaodong L, Quan Z. Compensatory increase of functional connectivity density in adolescents with internet gaming disorder. Brain Imaging Behav. 2016;11(6). https://doi.org/10.1007/s11682-016-9655-x.

  • Luo L, Xiao M, Luo Y, Yi H, Dong D, Liu Y, Chen X, Li W, Chen H. Knowing what you feel: inferior frontal gyrus-based structural and functional neural patterns underpinning adaptive body awareness. J Affect Disord. 2022;315:224–33. https://doi.org/10.1016/j.jad.2022.07.051.

    Article 

    Google Scholar 

  • Vartanian O, Beatty E, Smith I, Blackler K, Lam Q, Forbes S. One-way traffic: the inferior frontal gyrus controls brain activation in the middle Temporal gyrus and inferior parietal lobule during divergent thinking. Neuropsychologia. 2018;118:68–78. https://doi.org/10.1016/j.neuropsychologia.2018.02.024.

    Article 

    Google Scholar 

  • Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole MW, Christoff K. (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proceedings of the National Academy of Sciences 115 (7). https://doi.org/10.1073/pnas.1715766115

  • Parks M, Greenberg D, Nickel M, Dietrich M, Rogers B, Martin P. Recruitment of additional brain regions to accomplish simple motor tasks in chronic alcohol-dependent patients. Alcohol Clin Exp Res. 2010;34(6):1098–109. https://doi.org/10.1111/j.1530-0277.2010.01186.x.

    Article 

    Google Scholar 

  • Fedota J, Stein E. Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Ann N Y Acad Sci. 2015;1349(1):64–82. https://doi.org/10.1111/nyas.12882.

    Article 

    Google Scholar 

  • Stefan A, Christiane MT. Effects of nicotine on task switching and distraction in Non-smokers. fMRI Study Neurosci. 2020;444(0). https://doi.org/10.1016/j.neuroscience.2020.07.029.

  • Goldberg E, Tulviste J. Large-scale distributed networks and cerebral hemispheres. Cortex; a journal devoted to the study of the nervous system. Behav. 2022;152:53–8. https://doi.org/10.1016/j.cortex.2022.03.010.

    Article 

    Google Scholar 

  • Vickery S, Eickhoff S, Friedrich P. Hemispheric specialization of the primate inferior parietal lobule. Neurosci Bull. 2022;38(3):334–6. https://doi.org/10.1007/s12264-021-00807-4.

    Article 

    Google Scholar 

  • Vincent J, Kahn I, Snyder A, Raichle M, Buckner R. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol. 2008;100(6):3328–42. https://doi.org/10.1152/jn.90355.2008.

    Article 

    Google Scholar 

  • Barrós-Loscertales A, Bustamante J-C, Ventura-Campos N, Llopis J-J, Parcet M-A, Ávila C. Lower activation in the right frontoparietal network during a counting Stroop task in a cocaine-dependent group. Psychiatry Research: Neuroimaging. 2011;194(2):111–8. https://doi.org/10.1016/j.pscychresns.2011.05.001.

    Article 

    Google Scholar 

  • Kober H, Mende-Siedlecki P, Kross E, Weber J, Mischel W, Hart C, Ochsner K. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci USA. 2010;107(33):14811–6. https://doi.org/10.1073/pnas.1007779107.

    Article 

    Google Scholar 

  • Li X, Hartwell K, Borckardt J, Prisciandaro J, Saladin M, Morgan P, Johnson K, Lematty T, Brady K, George M. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addict Biol. 2013;18(4):739–48. https://doi.org/10.1111/j.1369-1600.2012.00449.x.

    Article 

    Google Scholar 

  • Peng X, Lin P, Wu X, Gong R, Yang R, Wang J. Insular subdivisions functional connectivity dysfunction within major depressive disorder. J Affect Disord. 2018;227:280–8. https://doi.org/10.1016/j.jad.2017.11.018.

    Article 

    Google Scholar 

  • Bu L, Yu D, Su S, Ma Y, von Deneen K, Luo L, Zhai J, Liu B, Cheng J, Guan Y, Li Y, Bi Y, Xue T, Lu X, Yuan K. Functional connectivity abnormalities of brain regions with structural deficits in young adult male smokers. Front Hum Neurosci. 2016;10:494. https://doi.org/10.3389/fnhum.2016.00494.

    Article 

    Google Scholar 

  • Chen Y, Cui Q, Xie A, Pang Y, Sheng W, Tang Q, Li D, Huang J, He Z, Wang Y, Chen H. Abnormal dynamic functional connectivity density in patients with generalized anxiety disorder. J Affect Disord. 2020;261:49–57. https://doi.org/10.1016/j.jad.2019.09.084.

    Article 

    Google Scholar 

  • Picard F, Sadaghiani S, Leroy C, Courvoisier D, Maroy R, Bottlaender M. High density of nicotinic receptors in the cingulo-insular network. NeuroImage. 2013;79:42–51. https://doi.org/10.1016/j.neuroimage.2013.04.074.

    Article 

    Google Scholar 

  • Nasir HN, David R, Hanna D, Antoine B. Damage to the Insula disrupts addiction to cigarette smoking. Science. 2007;315(5811). https://doi.org/10.1126/science.1135926.

  • Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. NeuroImage. 2019;200:313–31. https://doi.org/10.1016/j.neuroimage.2019.06.036.

    Article 

    Google Scholar 

  • Tang R, Razi A, Friston KJ, Tang YY. Mapping smoking addiction using effective connectivity analysis. Front Hum Neurosci. 2016;10:195. https://doi.org/10.3389/fnhum.2016.00195.

    Article 

    Google Scholar 

  • Lydon-Staley D, Ciric R, Satterthwaite T, Bassett D. Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity. Netw Neurosci (Cambridge Mass). 2019;3(2):427–54. https://doi.org/10.1162/netn_a_00071.

    Article 

    Google Scholar 

  • Dardo T, Nora DV. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;71(5). https://doi.org/10.1016/j.biopsych.2011.11.003.

  • Kathleen AG, Dustin S, Emily SF, Xilin S, R Todd C. The (in)stability of functional brain network measures across thresholds. NeuroImage. 2015;118(0). https://doi.org/10.1016/j.neuroimage.2015.05.046.

  • Lin F, Han X, Wang Y, Ding W, Sun Y, Zhou Y, Lei H. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity. Brain Imaging Behav. 2021;15(1):1–13. https://doi.org/10.1007/s11682-019-00227-z.

    Article 

    Google Scholar 

  • Nikolaus K, Kyle W, Patrick S, Chris SFB I B. Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci. 2009;12(5). https://doi.org/10.1038/nn.2303.

  • Rasmus MB, Erin KM, Rémi P, Taurean P, Timothy BM, Gregory RK, Veena AN, Elizabeth M, Vivek M P. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage. 2013;83(0). https://doi.org/10.1016/j.neuroimage.2013.05.099.

  • C D-M MTAJ, S A. Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project. NeuroImage. 2016;142(0). https://doi.org/10.1016/j.neuroimage.2016.05.062.

  • Koene RAVD, Trey H, Archana V, Karleyton CE, Sara WL, Randy LB. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2009;103(1). https://doi.org/10.1152/jn.00783.2009.

  • Continue Reading