El Morabet R. Effects of outdoor air pollution on human health. Reference module in Earth systems and environmental sciences. Elsevier; 2018.
Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O’Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, et al. Pollution and health: a progress update. Lancet Planet Health. 2022;6:e535–47. https://doi.org/10.1016/S2542-5196(22)00090-0
Google Scholar
Yu W, Xu R, Ye T, Abramson MJ, Morawska L, Jalaludin B, Johnston FH, Henderson SB, Knibbs LD, Morgan GG, et al. Estimates of global mortality burden associated with short-term exposure to fine particulate matter (PM(2.5)). Lancet Planet Health. 2024;8:e146–55. https://doi.org/10.1016/S2542-5196(24)00003-2
Google Scholar
Sacks JD, Stanek LW, Luben TJ, Johns DO, Buckley BJ, Brown JS, Ross M. Particulate matter-induced health effects: who is susceptible? Environ Health Perspect. 2011;119:446–54. https://doi.org/10.1289/ehp.1002255
Google Scholar
Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013;382:1039–48. https://doi.org/10.1016/S0140-6736(13)60898-3
Google Scholar
Hamanaka RB, Mutlu GM. Particulate matter air pollution: effects on the cardiovascular system. Front Endocrinol (Lausanne). 2018;9:680. https://doi.org/10.3389/fendo.2018.00680
Google Scholar
Chen JJ, Ma WM, Yuan JL, Cui LQ. PM2.5 exposure aggravates left heart failure induced pulmonary hypertension. Acta Cardiol. 2019;74:238–44. https://doi.org/10.1080/00015385.2018.1488568
Google Scholar
Ward-Caviness CK, Weaver AM, Buranosky M, Pfaff ER, Neas LM, Devlin RB, Schwartz J, Di Q, Cascio WE, Diaz-Sanchez D. Associations between long-term fine particulate matter exposure and mortality in heart failure patients. J Am Heart Assoc. 2020;9:e012517. https://doi.org/10.1161/JAHA.119.012517
Google Scholar
de Bont J, Jaganathan S, Dahlquist M, Persson A, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. J Intern Med. 2022;291:779–800. https://doi.org/10.1111/joim.13467
Google Scholar
Jia Y, Lin Z, He Z, Li C, Zhang Y, Wang J, Liu F, Li J, Huang K, Cao J, et al. Effect of air pollution on heart failure: systematic review and meta-analysis. Environ Health Perspect. 2023;131:76001. https://doi.org/10.1289/EHP11506
Google Scholar
Yang YS, Pei YH, Gu YY, Zhu JF, Yu P, Chen XH. Association between short-term exposure to ambient air pollution and heart failure: an updated systematic review and meta-analysis of more than 7 million participants. Frontiers in Public Health. 2023;10. ARTN 948765. https://doi.org/10.3389/fpubh.2022.948765
Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21:365–71. https://doi.org/10.1016/j.carpath.2011.11.007
Google Scholar
Gronda E, Dusi V, D’Elia E, Iacoviello M, Benvenuto E, Vanoli E. Sympathetic activation in heart failure. Eur Heart J Suppl. 2022;24:E4–11. https://doi.org/10.1093/eurheartjsupp/suac030
Google Scholar
Chavey WE 2. The importance of beta blockers in the treatment of heart failure. Am Fam Physician. 2000;62:2453–62.
Gheorghiade M, Colucci WS, Swedberg K. Beta-blockers in chronic heart failure. Circulation. 2003;107:1570–5. https://doi.org/10.1161/01.CIR.0000065187.80707.18
Google Scholar
Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012;59:117–22. https://doi.org/10.1016/j.jjcc.2011.12.006
Google Scholar
Masarone D, Martucci ML, Errigo V, Pacileo G. The use of beta-blockers in heart failure with reduced ejection fraction. J Cardiovasc Dev Dis. 2021;8. https://doi.org/10.3390/jcdd8090101
Alshak MN, Das JM, Neuroanatomy. Sympathetic nervous system. StatPearls. Treasure Island (FL); 2025.
Farzam K, Jan A. Beta blockers. StatPearls. Treasure Island (FL); 2024.
Niu Z, Liu F, Li B, Li N, Yu H, Wang Y, Tang H, Chen X, Lu Y, Cheng Z, et al. Acute effect of ambient fine particulate matter on heart rate variability: an updated systematic review and meta-analysis of panel studies. Environ Health Prev Med. 2020;25:77. https://doi.org/10.1186/s12199-020-00912-2
Google Scholar
Thangavel P, Park D, Lee YC. Recent insights into particulate matter (PM(2.5))-Mediated toxicity in humans: an overview. Int J Environ Res Public Health. 2022;19. https://doi.org/10.3390/ijerph19127511
Warburton DER, Bredin SSD, Shellington EM, Cole C, de Faye A, Harris J, Kim DD, Abelsohn A. A systematic review of the short-term health effects of air pollution in persons living with coronary heart disease. J Clin Med. 2019;8. https://doi.org/10.3390/jcm8020274
de Hartog JJ, Lanki T, Timonen KL, Hoek G, Janssen NA, Ibald-Mulli A, Peters A, Heinrich J, Tarkiainen TH, van Grieken R, et al. Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease. Environ Health Perspect. 2009;117:105–11. https://doi.org/10.1289/ehp.11062
Google Scholar
Carll AP, Hazari MS, Perez CM, Krantz QT, King CJ, Winsett DW, Costa DL, Farraj AK. Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats. Toxicol Sci. 2012;128:490–9. https://doi.org/10.1093/toxsci/kfs162
Google Scholar
Lin Z, Wang X, Liu F, Yang X, Liu Q, Xing X, Cao J, Li J, Huang K, Yan W, et al. Impacts of short-term fine particulate matter exposure on blood pressure were modified by control status and treatment in hypertensive patients. Hypertension. 2021;78:174–83. https://doi.org/10.1161/HYPERTENSIONAHA.120.16611
Google Scholar
Ibald-Mulli A, Timonen KL, Peters A, Heinrich J, Wolke G, Lanki T, Buzorius G, Kreyling WG, de Hartog J, Hoek G, et al. Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect. 2004;112:369–77. https://doi.org/10.1289/ehp.6523
Google Scholar
Peters A, Perz S, Doring A, Stieber J, Koenig W, Wichmann HE. Increases in heart rate during an air pollution episode. Am J Epidemiol. 1999;150:1094–8. https://doi.org/10.1093/oxfordjournals.aje.a009934
Google Scholar
Calderon-Garciduenas L, Vincent R, Mora-Tiscareno A, Franco-Lira M, Henriquez-Roldan C, Barragan-Mejia G, Garrido-Garcia L, Camacho-Reyes L, Valencia-Salazar G, Paredes R, et al. Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution. Environ Health Perspect. 2007;115:1248–53. https://doi.org/10.1289/ehp.9641
Google Scholar
Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des. 2016;22:28–51. https://doi.org/10.2174/1381612822666151109111712
Google Scholar
Wang W, Yang C, Wang F, Wang J, Zhang F, Li P, Zhang L. Does nonsteroidal anti-inflammatory drug use modify all-cause and cause-specific mortality associated with PM(2.5) and its components? A nationally representative cohort study (2007–2017). Environ Health (Wash). 2025;3:14–25. https://doi.org/10.1021/envhealth.4c00133
Google Scholar
Becerra AZ, Georas S, Brenna JT, Hopke PK, Kane C, Chalupa D, Frampton MW, Block R, Rich DQ. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: a panel study. J Toxicol Environ Health A. 2016;79:287–98. https://doi.org/10.1080/15287394.2016.1157539
Google Scholar
Carll AP, Farraj AK, Roberts AM. 13.04 – The role of the autonomic nervous system in cardiovascular toxicity. In: McQueen CA, editor. Comprehensive toxicology (Third Edition). Oxford: Elsevier; 2018. pp. 61–114.
Carll AP, Hazari MS, Perez CM, Krantz QT, King CJ, Haykal-Coates N, Cascio WE, Costa DL, Farraj AK. An autonomic link between inhaled diesel exhaust and impaired cardiac performance: insight from treadmill and Dobutamine challenges in heart failure-prone rats. Toxicol Sci. 2013;135:425–36. https://doi.org/10.1093/toxsci/kft155
Google Scholar
Wyatt LH, Weaver AM, Moyer J, Schwartz JD, Di Q, Diaz-Sanchez D, Cascio WE, Ward-Caviness CK. Short-term PM(2.5) exposure and early-readmission risk: a retrospective cohort study in North Carolina heart failure patients. Am Heart J. 2022;248:130–8. https://doi.org/10.1016/j.ahj.2022.02.015
Google Scholar
Di Q, Amini H, Shi L, Kloog I, Silvern R, Kelly J, Sabath MB, Choirat C, Koutrakis P, Lyapustin A, et al. An ensemble-based model of PM(2.5) concentration across the contiguous United States with high spatiotemporal resolution. Environ Int. 2019;130:104909. https://doi.org/10.1016/j.envint.2019.104909
Google Scholar
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145:e895–1032. https://doi.org/10.1161/CIR.0000000000001063
Google Scholar
DeMers D, Wachs D, Physiology. Mean arterial pressure. StatPearls. Treasure Island (FL); 2023.
Team RC. R: A Language and environment for statistical computing; 4.3.2. Vienna, Austria: R Foundation for Statistical Computing; 2023.
Kryger MH, Roth T, Dement WC, ScienceDirect. Principles and practice of sleep medicine. 5th ed. Philadelphia, Pa: Saunders/Elsevier; 2011.
Regitz-Zagrosek V, Brokat S, Tschope C. Role of gender in heart failure with normal left ventricular ejection fraction. Prog Cardiovasc Dis. 2007;49:241–51. https://doi.org/10.1016/j.pcad.2006.08.011
Google Scholar
Regitz-Zagrosek V. Sex and gender differences in heart failure. Int J Heart Fail. 2020;2:157–81. https://doi.org/10.36628/ijhf.2020.0004
Google Scholar
Santema BT, Ouwerkerk W, Tromp J, Sama IE, Ravera A, Regitz-Zagrosek V, Hillege H, Samani NJ, Zannad F, Dickstein K, et al. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study. Lancet. 2019;394:1254–63. https://doi.org/10.1016/S0140-6736(19)31792-1
Google Scholar
Pina IL, Jimenez S, Lewis EF, Morris AA, Onwuanyi A, Tam E, Ventura HO. Race and ethnicity in heart failure: JACC focus seminar 8/9. J Am Coll Cardiol. 2021;78:2589–98. https://doi.org/10.1016/j.jacc.2021.06.058
Google Scholar
Antonczak B, Thompson TM, DePaola MW, Rowangould G. 2020 Near-roadway population census, traffic exposure and equity in the United States. Transportation Research Part D: Transport and Environment. 2023;125:103965. https://doi.org/10.1016/j.trd.2023.103965
Tian N, Xue J, Barzyk TM. Evaluating socioeconomic and racial differences in traffic-related metrics in the United States using a GIS approach. J Expo Sci Environ Epidemiol. 2013;23:215–22. https://doi.org/10.1038/jes.2012.83
Google Scholar
Mulder BA, Damman K, Van Veldhuisen DJ, Van Gelder IC, Rienstra M. Heart rate and outcome in heart failure with reduced ejection fraction: differences between atrial fibrillation and sinus rhythm-A CIBIS II analysis. Clin Cardiol. 2017;40:740–5. https://doi.org/10.1002/clc.22725
Google Scholar