Sustained immune youth risks autoimmune disease in the aging host

  • Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soto-Heredero, G., Gomez de Las Heras, M. M., Escrig-Larena, J. I. & Mittelbrunn, M. Extremely differentiated T cell subsets contribute to tissue deterioration during aging. Annu. Rev. Immunol. 41, 181–205 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J. & Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 19, 563–572 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Moqri, M. et al. Validation of biomarkers of aging. Nat. Med. 30, 360–372 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrari, A. F. S. D. et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2133–2161 (2024).

    Google Scholar 

  • Shen, X. et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat. Aging 4, 1619–1634 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. Aging of the immune system. Mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 13 Suppl 5, S422–S428 (2016).

    PubMed 

    Google Scholar 

  • Abel, L. & Casanova, J.-L. Human determinants of age-dependent patterns of death from infection. Immunity 57, 1457–1465 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Boer, R. J., Tesselaar, K. & Borghans, J. A. M. Better safe than sorry: naive T-cell dynamics in healthy ageing. Semin. Immunol. 70, 101839 (2023).

    PubMed 

    Google Scholar 

  • Qi, Q., Zhang, D. W., Weyand, C. M. & Goronzy, J. J. Mechanisms shaping the naive T cell repertoire in the elderly — thymic involution or peripheral homeostatic proliferation? Exp. Gerontol. 54, 71–74 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujino, T., Asada, S., Goyama, S. & Kitamura, T. Mechanisms involved in hematopoietic stem cell aging. Cell. Mol. Life Sci. 79, 473 (2022).

    CAS 

    Google Scholar 

  • Kapadia, C. D. & Goodell, M. A. Tissue mosaicism following stem cell aging: blood as an exemplar. Nat. Aging 4, 295–308 (2024).

    PubMed 

    Google Scholar 

  • Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).

    PubMed 

    Google Scholar 

  • Neuberger, M. S. Antigen receptor signaling gives lymphocytes a long life. Cell 90, 971–973 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, B., Becourt, C., Bienvenu, B. & Lucas, B. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 108, 270–277 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Aiello, A. E., Chiu, Y. L. & Frasca, D. How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? Geroscience 39, 261–271 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanfermeijer, J. et al. Age and CMV-infection jointly affect the EBV-specific CD8+ T-cell repertoire. Front. Aging 2, 665637 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Verdon, D. J. & Jenkins, M. R. Identification and targeting of mutant peptide neoantigens in cancer immunotherapy. Cancers 13, 4245 (2021).

  • Wang, S. J., Dougan, S. K. & Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer 9, 543–553 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibis, B., Aliazis, K., Cao, C., Yenyuwadee, S. & Boussiotis, V. A. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front. Immunol. 14, 1197364 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abad Lopez, A. P., Trilleras, J., Arana, V. A., Garcia-Alzate, L. S. & Grande-Tovar, C. D. Atmospheric microplastics: exposure, toxicity, and detrimental health effects. RSC Adv. 13, 7468–7489 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finch, C. E. & Thorwald, M. A. Inhaled pollutants of the gero-exposome and later-life health. J. Gerontol. A Biol. Sci. Med. Sci. 79, glae107 (2024).

  • Finch, C. E. Air pollution, dementia, and lifespan in the socio-economic gradient of aging: perspective on human aging for planning future experimental studies. Front. Aging 4, 1273303 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, J. et al. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat. Aging 3, 600–616 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, J., Zhang, H., Weyand, C. M. & Goronzy, J. J. Lysosomes in T cell immunity and aging. Front. Aging 2, 809539 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Gressler, A. E., Leng, H., Zinecker, H. & Simon, A. K. Proteostasis in T cell aging. Semin. Immunol. 70, 101838 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. 21, 762–779 (2024).

    PubMed 

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Gorisse, L. et al. Protein carbamylation is a hallmark of aging. Proc. Natl Acad. Sci. USA 113, 1191–1196 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmelzer, C. E. H. & Duca, L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J. 289, 3704–3730 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Doue, M. et al. Carbamylation of elastic fibers is a molecular substratum of aortic stiffness. Sci. Rep. 11, 17827 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palatella, M., Guillaume, S. M., Linterman, M. A. & Huehn, J. The dark side of Tregs during aging. Front. Immunol. 13, 940705 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocamora-Reverte, L., Melzer, F. L., Wurzner, R. & Weinberger, B. The complex role of regulatory T cells in immunity and aging. Front. Immunol. 11, 616949 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Darrigues, J., van Meerwijk, J. P. M. & Romagnoli, P. Age-dependent changes in regulatory T lymphocyte development and function: a mini-review. Gerontology 64, 28–35 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, K. et al. NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. J. Clin. Invest. 131, e136042 (2021).

  • Donato, A. J., Machin, D. R. & Lesniewski, L. A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ. Res. 123, 825–848 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vatner, S. F. et al. Vascular stiffness in aging and disease. Front. Physiol. 12, 762437 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fritze, O. et al. Age-related changes in the elastic tissue of the human aorta. J. Vasc. Res. 49, 77–86 (2012).

    PubMed 

    Google Scholar 

  • Tembely, D. et al. The elastin receptor complex: an emerging therapeutic target against age-related vascular diseases. Front. Endocrinol. 13, 815356 (2022).

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9, 731–740 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyand, C. M., Liao, Y. J. & Goronzy, J. J. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J. Neuroophthalmol. 32, 259–265 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, Y., Tada, M., Goronzy, J. J. & Weyand, C. M. Immune checkpoints in autoimmune vasculitis. Best Pract. Res. Clin. Rheumatol. 38, 101943 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaymakci, M. S. et al. Subclinical aortic inflammation in patients with polymyalgia rheumatica. Rheumatology 63, 3289–3296 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaymakci, M. S. et al. Persistent aortic inflammation in patients with giant cell arteritis. Autoimmun. Rev. 22, 103411 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, K. et al. Regulatory T cells in autoimmune vasculitis. Front. Immunol. 13, 844300 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, R., Berry, G. J., Liang, D. H., Goronzy, J. J. & Weyand, C. M. Pathogenesis of giant cell arteritis and takayasu arteritis—similarities and differences. Curr. Rheumatol. Rep. 22, 68 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. Immunology of giant cell arteritis. Circ. Res. 132, 238–250 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakobsson, K. et al. Body mass index and the risk of giant cell arteritis: results from a prospective study. Rheumatology 54, 433–440 (2015).

    PubMed 

    Google Scholar 

  • Sato, Y. et al. Stem-like CD4+ T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 15, eadh0380 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, R. et al. MMP (matrix metalloprotease)-9-producing monocytes enable T cells to invade the vessel wall and cause vasculitis. Circ. Res. 123, 700–715 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

  • Im, S. J. et al. Characteristics and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in chronic viral infection and cancer. Proc. Natl Acad. Sci. USA 120, e2221985120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sturmlechner, I., Jain, A., Mu, Y., Weyand, C. M. & Goronzy, J. J. T cell fate decisions during memory cell generation with aging. Semin. Immunol. 69, 101800 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, A., Sturmlechner, I., Weyand, C. M. & Goronzy, J. J. Heterogeneity of memory T cells in aging. Front. Immunol. 14, 1250916 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Aging-associated HELIOS deficiency in naive CD4+ T cells alters chromatin remodeling and promotes effector cell responses. Nat. Immunol. 24, 96–109 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Durand, M. & Thomas, S. L. Incidence of infections in patients with giant cell arteritis: a cohort study. Arthritis Care Res. 64, 581–588 (2012).

    Google Scholar 

  • Schmidt, J. et al. Incidence of severe infections and infection-related mortality during the course of giant cell arteritis: a multicenter, prospective, double-cohort study. Arthritis Rheumatol. 68, 1477–1482 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Z. et al. The five major autoimmune diseases increase the risk of cancer: epidemiological data from a large-scale cohort study in China. Cancer Commun. 42, 435–446 (2022).

    Google Scholar 

  • Giat, E., Ehrenfeld, M. & Shoenfeld, Y. Cancer and autoimmune diseases. Autoimmun. Rev. 16, 1049–1057 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Kermani, T. A. et al. Malignancy risk in patients with giant cell arteritis: a population-based cohort study. Arthritis Care Res. 62, 149–154 (2010).

    Google Scholar 

  • Kendziora, R. W. et al. Age-related histopathological findings in temporal arteries. Histopathology 83, 782–790 (2023).

    PubMed 

    Google Scholar 

  • Broomfield, B. J. & Groom, J. R. Defining the niche for stem-like CD8+ T cell formation and function. Curr. Opin. Immunol. 89, 102454 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Duckworth, B. C., Qin, R. Z. & Groom, J. R. Spatial determinates of effector and memory CD8+ T cell fates. Immunol. Rev. 306, 76–92 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, Z. et al. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF–Jagged1–Notch pathway. Sci. Transl. Med. 9, eaal3322 (2017).

  • Smets, P. et al. Vascular endothelial growth factor levels and rheumatic diseases of the elderly. Arthritis Res. Ther. 18, 283 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Piggott, K. et al. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation 123, 309–318 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, B. & Rothenberg, E. V. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front. Immunol. 14, 1108368 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, B., Chang, S. J., MacNabb, B. W. & Rothenberg, E. V. Transcriptional network dynamics in early T cell development. J. Exp. Med. 221, e20230893 (2024).

  • Wilkens, A. B. et al. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 140, 2261–2275 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, D. H. et al. Immunotherapy response induces divergent tertiary lymphoid structure morphologies in hepatocellular carcinoma. Nat. Immunol. 25, 2110–2123 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, C. M. et al. The efficacy of immune checkpoint inhibitors in elderly patients: a meta-analysis and meta-regression. ESMO Open 7, 100577 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, J. et al. Efficacy and safety of immune checkpoint inhibitors in elderly patients with advanced non-small cell lung cancer: a systematic review and meta-analysis. eClinicalMedicine 81, 103081 (2025).

  • Eochagain, C. M. et al. Management of immune checkpoint inhibitor-associated toxicities in older adults with cancer: recommendations from the International Society of Geriatric Oncology (SIOG). Lancet Oncol. 26, e90–e102 (2025).

    PubMed 

    Google Scholar 

  • Hysa, E. et al. Polymyalgia rheumatica and giant cell arteritis induced by immune checkpoint inhibitors: a systematic literature review highlighting differences from the idiopathic forms. Autoimmun. Rev. 23, 103589 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Rivellese, F., Pontarini, E. & Pitzalis, C. Tertiary lymphoid organs in rheumatoid arthritis. Curr. Top. Microbiol. Immunol. 426, 119–141 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. Immune aging in rheumatoid arthritis. Arthritis Rheum. https://doi.org/10.1002/art.43105 (2025).

  • Weyand, C. M. & Goronzy, J. J. Metabolic checkpoints in rheumatoid arthritis. Semin. Arthritis Rheum. 70S, 152586 (2025).

    PubMed 

    Google Scholar 

  • Zheng, Y., Liu, Q., Goronzy, J. J. & Weyand, C. M. Immune aging – a mechanism in autoimmune disease. Semin. Immunol. 69, 101814 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 294, 177–187 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, Z., Wei, F. & Ren, X. Exhausted T cells and epigenetic status. Cancer Biol. Med. 17, 923–936 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zu, H. & Chen, X. Epigenetics behind CD8+ T cell activation and exhaustion. Genes Immun. 25, 525–540 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Maggi, E. et al. T cell landscape in the microenvironment of human solid tumors. Immunol. Lett. 270, 106942 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Khan, N., Vidyarthi, A., Amir, M., Mushtaq, K. & Agrewala, J. N. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit. Rev. Microbiol. 43, 133–141 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Minato, N., Hattori, M. & Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol. 32, 223–231 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fukushima, Y., Ueno, R., Minato, N. & Hattori, M. Senescence-associated T cells in immunosenescence and diseases. Int. Immunol. 37, 143–152 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Noll, J. H., Levine, B. L., June, C. H. & Fraietta, J. A. Beyond youth: understanding CAR T cell fitness in the context of immunological aging. Semin. Immunol. 70, 101840 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwama, S., Kobayashi, T. & Arima, H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. Nat. Rev. Endocrinol. 21, 289–300 (2025).

  • Munir, A. Z., Gutierrez, A., Qin, J., Lichtman, A. H. & Moslehi, J. J. Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat. Rev. Cancer 24, 540–553 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Ohtsuki, S. et al. Deficiency of the CD155–CD96 immune checkpoint controls IL-9 production in giant cell arteritis. Cell Rep. Med. 4, 101012 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. CD28 signaling controls metabolic fitness of pathogenic T cells in medium and large vessel vasculitis. J. Am. Coll. Cardiol. 73, 1811–1823 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Inhibition of JAK–STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation 137, 1934–1948 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Watanabe, R., Zhang, H., Berry, G., Goronzy, J. J. & Weyand, C. M. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am. J. Physiol. Heart Circ. Physiol. 312, H1052–H1059 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc. Natl Acad. Sci. USA 114, E970–E979 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C. M. TH17 and TH1 T-cell responses in giant cell arteritis. Circulation 121, 906–915 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, A. K. et al. Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1320–1329 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).

    PubMed 

    Google Scholar 

  • Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, T. V. et al. Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease. Nat. Cardiovasc. Res. 1, 634–648 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading