Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129 (Suppl), S3–S14. https://doi.org/10.1017/s0031182004005967 (2004).
Google Scholar
Guglielmone, A. A. et al. The Hard Ticks of the World (Acari: Ixodida: Ixodidae) 738 (Springer, 2014). https://doi.org/10.1007/978-94-007-7497-1.
Abouelhassan, E. M. et al. Molecular identification and morphological variations of Amblyomma lepidum imported to egypt, with notes about its potential distribution under climate change. Parasitol. Res. 123 (7), 276. https://doi.org/10.1007/s00436-024-08284-0 (2024).
Google Scholar
Kim, K. S. Current challenges in the development of vaccines and drugs against emerging vector-borne diseases. Curr. Med. Chem. 26 (16), 2974–2986. https://doi.org/10.2174/0929867325666181105121146 (2019).
Google Scholar
Okely, M., Anan, R., Gad-Allah, S. & Samy, A. M. Hard ticks (Acari: Ixodidae) infesting domestic animals in egypt: diagnostic characters and a taxonomic key to the collected species. Med. Vet. Entomol. 35 (3), 333–351. https://doi.org/10.1111/mve.12502 (2021).
Google Scholar
Sándor, A. D., Mihalca, A. D., Domssa, C., Péter, A. & Hornok, S. Argasid ticks of Palearctic bats: distribution, host selection, and zoonotic importance. Front. Veterinary Sci. 8, 684737. https://doi.org/10.3389/fvets.2021.684737 (2021).
Google Scholar
Achuthkumar, A. et al. Transcriptome profiling of Rhipicephalus annulatus reveals differential gene expression of metabolic detoxifying enzymes in response to acaricide treatment. Biomedicines 11 (5), 1369. https://doi.org/10.3390/biomedicines11051369 (2023).
Google Scholar
Amrutha, B. M. et al. Morphological and molecular characterization of Rhipicephalus Microplus and Rhipicephalus annulatus from selected States of Southern India. Ticks Tick-Borne Dis. 14 (2), 102086. https://doi.org/10.1016/j.ttbdis.2022.102086 (2023).
Google Scholar
Shah, S. Z. et al. Epidemiology, pathogenesis, and control of a tick-borne disease- Kyasanur forest disease: current status and future directions. Front. Cell. Infect. Microbiol. 8, 149. https://doi.org/10.3389/fcimb.2018.00149 (2018).
Google Scholar
Okely, M., Anan, R., Gad-Allah, S. & Samy, A. M. Mapping the environmental suitability of etiological agent and tick vectors of Crimean-Congo hemorrhagic fever. Acta Trop. 203, 105319. https://doi.org/10.1016/j.actatropica.2019.105319 (2020).
Google Scholar
Ibrahium, S. M. et al. Preparation of geranium oil formulations effective for control of phenotypic resistant cattle tick Rhipicephalus annulatus. Sci. Rep. 12, 11693. https://doi.org/10.1038/s41598-022-14661-5 (2022a).
Google Scholar
Shuaib, Y. A. et al. Ixodid tick species and two tick-borne pathogens in three areas in the Sudan. Parasitol. Res. 119, 385–394. https://doi.org/10.1007/s00436-019-06458-9 (2020).
Google Scholar
Mihalca, A. D., Gherman, C. M. & Cozma, V. Coendangered hard-ticks: threatened or threatening? Parasites Vectors. 4, 1–7. https://doi.org/10.1186/1756-3305-4-71 (2011).
Google Scholar
Hoogstraal, H. & Kaiser, M. N. Some host relationships of the tortoise tick, Hyalomma (Hyalommasta) aegyptium (L.) (Ixodoidea, Ixodidae) in Turkey. Ann. Entomol. Soc. Am. 53, 457–458. https://doi.org/10.1093/aesa/53.4.457 (1960).
Apanaskevich, D. A. Towards a diagnostic view of Hyalomma (Hyalomma) aegyptium. Ixodidae) Parazitologiia. 37, 47–59 (2003). http://europepmc.org/abstract/MED/12677670Acari.
Google Scholar
Kaiser, M. N. & Hoogstraal, H. The Hyalomma ticks (Ixodoidea, Ixodidade) of Afghanistan. J. Parasitol. 49, 130–139. https://doi.org/10.2307/3275691 (1963).
Google Scholar
Široký, P., Petrželková, K. J., Kamler, M., Mihalca, A. D. & Modry, D. Hyalomma aegyptium as dominant tick in tortoises of the genus Testudo in Balkan countries, with notes on its host preferences. Exp. Appl. Acarol. 40, 279–290. https://doi.org/10.1007/s10493-006-9036-z (2005).
Google Scholar
Tavassoli, E., Rahimi-Asiabi, N. & Tavassoli, M. Hyalomma aegyptium on spur-thighed tortoise (Testudo graeca) in urmia region West azerbaijan, Iran. Iran. J. Parasitol. 2 (2), 40–47 (2007). https://api.semanticscholar.org/CorpusID:86748072
Iqbal, Z., Kayani, A. R., Akhter, A. & Qayyum, M. Prevalence and distribution of hard ticks and their associated risk factors in sheep and goats from four agro-climatic zones of Khyber Pakhtunkhwa (KPK), Pakistan. International J. Environ. Res. Public. Health. 19 (18), 11759. https://doi.org/10.3390/ijerph191811759 (2022).
Google Scholar
Bitam, I., Kernif, T., Harrat, Z., Parola, P. & Raoult, D. First detection of Rickettsia aeschlimannii in Hyalomma aegyptium from Algeria. Eur. Soc. Clin. Microbiol. Infect. Dis. CMI. 15 (2), 253–254. https://doi.org/10.1111/j.1469-0691.2008.02274.x (2009).
Google Scholar
Paștiu, A. I. et al. Zoonotic pathogens associated with Hyalomma aegyptium in endangered tortoises: evidence for host-switching behaviour in ticks? Parasites Vectors. 5, 301. https://doi.org/10.1186/1756-3305-5-301 (2012).
Google Scholar
Kalmár, Z. et al. Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks. PLoS ONE. 10 (2), e0115520. https://doi.org/10.1371/journal.pone.0115520 (2015).
Google Scholar
Kar, S. et al. Crimean-Congo hemorrhagic fever virus in tortoises and Hyalomma aegyptium ticks in East thrace, turkey: potential of a cryptic transmission cycle. Parasites Vectors. 13, 201–213. https://doi.org/10.1186/s13071-020-04074-6 (2020).
Google Scholar
Široký, P. et al. Co-distribution pattern of a haemogregarine Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium (Metastigmata: Ixodidae). J. Parasitol. 95, 728–733. https://doi.org/10.1645/GE-1842.1 (2009).
Google Scholar
Rubel, F. Hyalomma aegyptium: observed global distribution, imported specimens, preferred hosts and vector competence. Ticks Tick-borne Dis. 16 (1), 102438. https://doi.org/10.1016/j.ttbdis.2025.102438 (2025).
Google Scholar
Laghzaoui, E. M. et al. Acaricidal properties of essential oils from Moroccan plants against immature ticks of Hyalomma aegyptium (Linnaeus, 1758); an external parasite of the spurthighed tortoise (Testudo graeca). Int. J. Acarol. 44 (7), 315–321. https://doi.org/10.1080/01647954.2018.1520918 (2018).
Google Scholar
Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J. & Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet. Parasitol. 203, 6–20. https://doi.org/10.1016/j.vetpar.2014.03.006 (2014).
Google Scholar
Zaheer, T. et al. Insights into nanopesticides for ticks: the superbugs of livestock. Oxid. Med. Cell. Longev. 2022(1), 7411481. https://doi.org/10.1155/2022/7411481 (2022).
Google Scholar
El Hakim, A. E., Shahein, Y. E., Abouelella, A. M. & Selim, M. E. Purification and characterization of two larval glycoproteins from the cattle tick, Boophilus annulatus. J. Vet. Sci. 8, 175–180. https://doi.org/10.4142/jvs.2007.8.2.175 (2007).
Google Scholar
Ibrahium, S. M. et al. Acaricidal activity of tea tree and lemon oil nanoemulsions against Rhipicephalus annulatus. Pathogens 11 (12), 1506. https://doi.org/10.3390/pathogens11121506 (2022b).
Google Scholar
Ribeiro, V. L. S. et al. Acaricidal properties of the essential oil and precocene II obtained from Calea Serrata (Asteraceae) on the cattle tick Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae). Vet. Parasitol. 179, 195–198. https://doi.org/10.1016/j.vetpar.2011.02.006 (2011).
Google Scholar
Costa-Júnior, L. M. et al. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) Microplus. Vet. Parasitol. 228, 60–64. https://doi.org/10.1016/j.vetpar.2016.05.028 (2016).
Google Scholar
Gonzaga, B. C. F. et al. Essential oils and isolated compounds for tick control: advances beyond the laboratory. Parasites Vectors. 16 (1), 415. https://doi.org/10.1186/s13071-023-05969-w (2023).
Google Scholar
Lam, M. K. et al. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew. Energy. 103, 197–207. https://doi.org/10.1016/j.renene.2016.11.032 (2017).
Google Scholar
Torres, E., Bertoldo, L., Bender, C., Medianeira, T. & de Cassia, R. Removal of organic contaminants in water bodies or wastewater by microalgae of the genus Chlorella: A review. Case Stud. Chem. Environ. Eng. 8, 100476. https://doi.org/10.1016/j.cscee.2023.100476 (2023).
Google Scholar
Ahmad, I., Abdullah, N., Iwamoto, K. & Yuzir, A. The contribution of microalgae in bio-refinery and resource recovery: a sustainable approach leading to circular bioeconomy. Chem. Eng. Trans. 89, 391–396. https://doi.org/10.3303/CET2189066 (2021).
Google Scholar
Gonçalves, A. L., Pires, J. C. M. & Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24, 403–415. https://doi.org/10.1016/j.algal.2016.11.008 (2017).
Google Scholar
Umamaheswari, J. & Shanthakumar, S. Efficacy of microalgae for industrial wastewater treatment: A review on operating conditions, treatment efficiency and biomass productivity. Rev. Environ. Sci. Bio/Technol. 15, 265–284. https://doi.org/10.1007/s11157-016-9397-7 (2016).
Google Scholar
Liu, X. et al. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Chemosphere 186, 977–985. https://doi.org/10.1016/j.chemosphere.2017.07.160 (2017).
Google Scholar
Salgueiro, J. L., Perez-Rial, L., Maceiras, R., Sanchez, A. & Cancela, A. Transforming wastewater into biofuel: nutrient removal and biomass generation with Chlorella vulgaris. Energies 17, 4911. https://doi.org/10.3390/en17194911 (2024).
Google Scholar
Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S. & de Lasa, H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew. Sustain. Energy Rev. 27, 622–653. https://doi.org/10.1016/j.rser.2013.05.063 (2013).
Google Scholar
Sandoval, J., Naranjo, K. & Casas, L. Sunscreen production from Chlorella vulgaris. Chem. Eng. Trans. 109, 325–330. https://doi.org/10.3303/CET24109055 (2024).
Google Scholar
Hwang, J-H., Church, J., Lee, S-J., Park, J. & Lee, W. H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 33 (11), 882–897. https://doi.org/10.1089/ees.2016.013 (2016).
Google Scholar
Hoogstraal, H. African ixodoidea. I. Ticks of the Sudan (with special reference to Equatoria Province and with preliminary reviews of the genera boophilus, margaropus, and Hyalomma). In Department Navy Bureau Med. Surg. US Naval Med. Res. Unit. 3 Cairo Egypt. https://api.semanticscholar.org/CorpusID:89546372 (1956).
Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa – a guide to species identification. Springer Int. Publishing. 404, 856. https://doi.org/10.1007/978-3-319-63760-0 (2017).
Stainer, R. Y., Kunisawa, R., Mandel, M. & Cohin-Bazire, G. Purification and properties of unicellular blue-green algae (order Chrococcales). Bacteriol. Rev. 35, 171–205. https://doi.org/10.1128/br.35.2.171-205.1971 (1971).
Google Scholar
El-Sayed, A. B. & El Fouly, M. M. Recovery of outdoor mass culture bleached Scendesmus Sp. Pakistan J. Biol. Sci. 8 (3), 470–474. https://doi.org/10.3923/pjbs.2005.470.474 (2005).
Google Scholar
Wang, G. X. et al. Bioassay-guided isolation and identification of active compounds from Fructus cnidii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol. Res. 106, 247–255. https://doi.org/10.1007/s00436-009-1659-7 (2009).
Google Scholar
Scheffe, H. The Analysis of Variance. Vol. 72 (Wiley, 1999).
Millonig, G. Advantages of a phosphate buffer for OSO4 solutions in fixation. J. Appl. Phys. 32, 1637–1639 (1961).
Dawes, C. J. Biological Techniques in Electron Microscopy 148–149 (Barnes and Noble, Inc., 1971).
Merdivenci, A. Türkiye keneleri üzerine aras¸tırmalar, Istanbul Cerrahpasa Tıp Fakültesi Yayını, Yayın No; 1488, Kurtulus¸ Matbaası, Istanbul (1969).
Aydin, L. Distribution and species of ticks on ruminants in the Southern Maramara region. Acta Parasitol. Turc. 24 (1), 194–200 (2000).
Aydin, L., Yildirimhan, H. S. & Ugurtaš, I. H. Prevalence of ticks (Ixodidae) on some lizards and turtles in the Marmara region. Acta Parasitol. Turc. 26 (1), 84–86 (2002).
Bakirci, S. Prevalence of Hyalomma aegyptium (Linneaus, 1758) on tortoises (Testudo graeca) in Izmir and Aydin province, Turkey. Etlik Vet. Mikrobiyol Derg. 27 (1), 5–7 (2016). http://vetkontrol.tarim.gov.tr/merkez
Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Guindy, E. & Gaber, S. Ticks (Ixodidae) on birds migrating from Europe and Asia to africa, 1959-61. Bull. World Health Org. 28, 235–262 (1963). https://iris.who.int/handle/10665/266527
Google Scholar
Hoogstraal, H. et al. Ticks (Ixodidae) on migrating birds in egypt, spring and fall 1962. bull. Org. Mond. Sante and bull. Wld Hlth Org. 30, 355–367 (1964). https://iris.who.int/handle/10665/266828
Google Scholar
Sweatman, G. K. Temperatures and humidity effects on the oviposition of Hyalomma aegyptium ticks of different engorgement weights. J. Med. Entomol. 5, 429–439. https://doi.org/10.1093/jmedent/5.4.429 (1968).
Google Scholar
Walker, A. R. et al. Ticks of domestic animals in Africa: a guide to identification species. Bioscience Reports Edinburgh (2014).
Hoogstraal, H. & Kaiser, M. N. The ticks (Ixodoidea) of egypt: a brief review and keys. J. Egypt. Public. Health Assoc. 33, 57–85 (1958). https://api.semanticscholar.org/CorpusID:87521015
Nowak, M. The international trade in reptiles (Reptilia)-The cause of the transfer of exotic ticks (Acari: Ixodida) to Poland. Vet. Parasitol. 169, 373–381. https://doi.org/10.1016/j.vetpar.2010.01.006 (2010).
Google Scholar
Liebish, A., Rahaman, M. S. & Hoogstaal, H. Tick fauna of Egypt with special reference to studies on Hyalomma anatolicum anatolicum the natural vector of theilerioses. Progress Acarology. 1, 55–58 (1989).
Clark, L. G. & Doten, E. H. Ticks on imported reptiles into Miami International Airport: November 1994 through January 1995. In Proceedings for the Veterinary Epidemiology and Economics Symposium. United States Department of Agriculture, Fort Collins, CO. 1A17-1A25 (1995).
Burridge, M. J., Simmons, L. A. & Hofer, C. C. Clinical study of a permethrin formulation as a topical acaricide for use on tortoises, snakes and lizards. J. Herpetol Med. Surg. 13 (4), 16–19. https://doi.org/10.1016/S0304-4017(03)00060-8 (2003).
Google Scholar
Hillyard, P. D. Ticks of North-West Europe. Synopses of the British Fauna (New Series). Banks RSK, Crothers JH (Eds) No. 52. In The Linnean Society of London and The Estuarine and Coastal Sciences Association by Field Studies Council Publications, Montford Bridge, U.K. vii 178 ISBN: 1 85153 257 9. E19.50 (1996).
Nowak-Chmura, M. A biological/medical review of alien tick species (Acari: Ixodida) accidentally transferred to Poland. Annals Parasitol. 60 (1), 49–59 (2014). https://api.semanticscholar.org/CorpusID:33565367
Brianti, E. et al. Risk for the introduction of exotic ticks and pathogens into Italy through the illegal importation of tortoises, Testudo Graeca. Med. Vet. Entomol. 24, 336–339. https://doi.org/10.1111/j.1365-2915.2010.00874.x (2010).
Google Scholar
Ren, Q. et al. Biological control of engorged female Haemaphysalis qinghaiensis (Acari: Ixodidae) ticks with different Chinese isolates of Beauveria Bassiana. Parasitol. Res. 109, 1059–1064. https://doi.org/10.1007/s00436-011-2346-z (2011).
Google Scholar
Singh, N. K. et al. Acaricidal activity of Cymbopogon winterianus, Vitex Negundo and Withania somnifera against synthetic pyrethroid resistant Rhipicephalus (Boophilus) Microplus. Parasitol. Res. 113 (1), 341–350. https://doi.org/10.1007/s00436-013-3660-4) (2014).
Google Scholar
Alonso-Díaz, M. A. & Fernández-Salas, A. Entomopathogenic fungi for tick control in cattle livestock from Mexico. Front. Fungal Biology. 2, 657694. https://doi.org/10.3389/ffunb.2021.657694 (2021).
Google Scholar
Abdel-Ghany, H. S. et al. In vitro acaricidal effect of Melia azedarach and Artemisia herba-alba extracts on Hyalomma dromedarii (Acari: Ixodidae): embryonated eggs and engorged nymphs. J. Parasitic. Dis. 43, 696–710. https://doi.org/10.1007/s12639-019-01149-9 (2019).
Sewify, G. H. & Habib, S. M. Biological control of the tick fowl Argas Persicargas persicus by the entomopathogenic fungi Beauveria Bassiana and Metarhizium anisopliae. Anzeiger Für Schädlingskunde = J. Pest Sci. 74, 121–123. https://doi.org/10.1046/j.1439-0280.2001.01015.x (2001).
Google Scholar
Pourseyed, S. H., Tavassoli, M., Bernousi, I. & Mardani, K. Metarhizium anisopliae (Ascomycota: Hypocreales): an effective alternative to chemical acaricides against different developmental stages of fowl tick Argas persicus (Acari: Argasidae). Vet. Parasitol. 172 (3–4), 305–310. https://doi.org/10.1016/j.vetpar.2010.05.014 (2010).
Google Scholar
Tavassoli, M., Pourseyed, S. H., Ownagh, A., Bernousi, I. & Mardani, K. Biocontrol of pigeon tick Argas reflexus (Acari: Argasidae) by entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Hypocreales). Brazilian J. Microbiol. 42, 1445–1452. https://doi.org/10.1590/S1517-838220110004000030 (2011).
Google Scholar
Ibrahim, A. A., Marzouk, A. S., Mohamed, F. S. A., Swelim, H. H. & Baioumy, A. A. Effectiveness of spraying the entomopathogenic fungus Beauveria Bassiana (Balsamo) on the main biological parameters involved in the control of the adult tick Argas (Persicargas) persicus (Oken, 1818). Int. J. Environ. Sci. Eng. (IJESE). 8, 13–30 (2017).
Marzouk, A. S., Swelim, H. H. & Ali, A. A. B. Ultrastructural changes induced by the entomopathogenic fungus Beauveria Bassiana in the ovary of the tick Argas (Persicargas) persicus (Oken). Ticks Tick. Borne Dis. 11 (6), 101507. https://doi.org/10.1016/j.ttbdis.2020.101507 (2020).
Google Scholar
Zeina, G. W., Ahmed, M., Saeed, M., Ziena, L. & Laing, M. Field evaluation of Beauveria Bassiana (Balsamo) vuillemin isolates for the biocontrol of Rhipicephalus Microplus (Canestrini) ticks on cattle. Exp. Parasitol. 235, 108215. https://doi.org/10.1016/j.exppara.2022.108215 (2022).
Google Scholar
Marzouk, A. S. & Ali, A. A. B. A comparison between the effectiveness of the fungi Beauveria Bassiana and Metarhizium anisopliae for the control of Argas persicus with the emphasis of histopathological changes in the integument. Vet. Parasitol. 317, 109906. https://doi.org/10.1016/j.vetpar.2023.10990 (2023).
Google Scholar
Abdel-Shafy, S., Soliman, M. M. & Habeeb, S. M. In vitro acaricidal effect of some crude extracts and essential oils of wild plants against certain tick species. Acarologia 47, 33–42 (2007).
Anholeto, L. A. et al. I. Morphological alterations in the ovaries of Amblyomma Cajennense semi-engorged ticks exposed to ethanolic extract of Acmella Oleracea. Microsc Res. Tech. 81, 1347–1357. https://doi.org/10.1002/jemt.23145 (2018).
Google Scholar
Reis, A. C. et al. Cytotoxic effects of Satureja Montana L. essential oil on oocytes of engorged Rhipicephalus Microplus female ticks (Acari: Ixodidae). Microsc. Res. Tech. 84 (7), 1375–1388. https://doi.org/10.1002/jemt.23693 (2021).
Google Scholar
Mohamed, S. N. A., Montasser, A. A. & Ali, A. A. B. Acaricidal effect of Citrullus colocynthis fruit extract on the camel tick Hyalomma dromedarii (Koch, 1844). Ticks Tick-borne Dis. 13, 101995. https://doi.org/10.1016/j.ttbdis.2022.101995 (2022).
Google Scholar
Ali, A. A. B., Taha, M. A. & Controlling Argas arboreus and A. persicus (Acari: Argasidae) by Adiantum capillus-veneris L. extracts with phytochemical analysis. Vet. Parasitol. 324, 110067. https://doi.org/10.1016/j.vetpar.2023.110067 (2023).
Ali, A. A. B., Montasser, A. A. & Mohamed, S. N. A. Histopathological effects of the fruit extract of Citrullus colocynthis on the ovary of the tick Hyalomma dromedarii. Exp. Appl. Acarol. 92 (2), 275–295. https://doi.org/10.1007/s10493-023-00895-z (2024).
Google Scholar
Hassan, M. E., Mohafrash, S. M., Fallatah, S. A., El-Sayed, A. E. K. B. & Mossa, A. T. H. Eco-friendly larvicide of Amphora coffeaeformis and Scenedesmus obliquus microalgae extracts against Culex pipiens. J. Appl. Phycol. 33, 2683–2693. https://doi.org/10.1007/s10811-021-02440-0 (2021).
Google Scholar
Cavalcanti, V. L. R. et al. Chlorella vulgaris lectin kills Aedes aegypti larvae. Algal Res. 56, 102290. https://doi.org/10.1016/j.algal.2021.102290 (2021).
Google Scholar
Tufan-Cetin, O. & Cetin, H. Use of micro and macroalgae extracts for the control of vector mosquitoes. Peer J. 11, e16187. https://doi.org/10.7717/peerj.16187 (2023).
Google Scholar
El-Mustapha, L., Abderrafea, E., Ayoub, K., Abdelaziz, A. & El Hassan, E. M. Toxicity of essential oils obtained from Juniperus thurifera var. Africana and Mentha suaveolens subsp. Timija chemotypes against pre-adult stages of Hyalomma aegyptium tick (Acari: Ixodidae). Nat. Prod. Res. 35 (17), 2952–2957. https://doi.org/10.1080/14786419.2019.1677658 (2021).
Google Scholar
Robbins, R. G. et al. First records of Hyalomma aegyptium (Acari: ixodida: Ixodidae) from the Russian spur-thighed tortoise, Testudo Graeca nikolskii, with an analysis of tick population dynamics. J. Parasitol. 84, 1303–1305. https://doi.org/10.2307/3284699 (1998).
Google Scholar
Široký, P., Erhart, J., Petrzelková, K. J. & Kamler, M. Life cycle of tortoise tick Hyalomma aegyptium under laboratory conditions. Exp. Appl. Acarol. 54, 277–284. https://doi.org/10.1007/s10493-011-9442-8 (2011).
Google Scholar
Gharbi, M. et al. Infestation of the spur-thighed tortoise (Testudo graeca) by Hyalomma aegyptium in Tunisia. Ticks Tick-borne Dis. 6, 352–355. https://doi.org/10.1016/j.ttbdis.2015.02.009 (2015).
Google Scholar
Tiar, G., Tiar-Saadi, M., Benyacoub, S., Rouag, R. & Široký, P. The dependence of Hyalomma aegyptium on its tortoise host Testudo Graeca in Algeria. Med. Vet. Entomol. 30 (3), 351–359. https://doi.org/10.1111/mve.1217 (2016).
Google Scholar
Bizhga, B. et al. Hyalomma aegyptium the dominant hard tick in tortoises Tesdudo hermanni boettgeri found in different regions of Albania. Int. J. Parasitology: Parasites Wildl. 17, 199–204. https://doi.org/10.1016/j.ijppaw.2022.02.002 (2022).
Google Scholar
Sarani, S. et al. Identification of zoonotic pathogenic bacteria from blood and ticks obtained from hares and long-eared hedgehogs (Hemiechinus megalofis) in Eastern Iran. Comp. Immunol. Microbiol. Infect. Dis. 104, 102097. https://doi.org/10.1016/j.cimid.2023.102097 (2024).
Google Scholar
Gharbi, M. & Darghouth, M. A. A review of Hyalomma scupense (Acari, Ixodidae) in the Maghreb region: from biology to control. Parasite 21, 2. https://doi.org/10.1051/parasite/2014002 (2014).
Google Scholar
Friesen, K. J. & Kaufman, W. R. Salivary gland degeneration and vitellogenesis in the Ixodid tick Amblyomma hebraeum: surpassing a critical weight is the prerequisite and detachment from the host is the trigger. J. Insect Physiol. 55 (10), 936–942. https://doi.org/10.1016/j.jinsphys.2009.06.007 (2009).
Google Scholar
Bedford, G. A. H. Ticks found on man and his domestic animals and poultry in South Africa. J. Department Agric. 1 (4), 317–340 (1920).
Gazyağci, S., Aşan, N. & Demirbaş, Y. A common tortoise tick, Hyalomma aegyptium Linne 1758 (Acari: Ixodidae), identified on eastern hedgehog (Erinaceus concolor Martin 1838) in Central Anatolia. Turk. J. Vet. Anim. Sci. 34 (2), 211–213. https://doi.org/10.3906/vet-0808-21 (2010).
Google Scholar
Kireçci, E., Özer, A., Balkaya, İ., Taniş, H. & Deveci, S. Identification of ticks on tortoises (Testudo graeca) and investigation of some pathogens in these ticks in kahramanmaraş, Turkey. KSU J. Nat. Sci. 16 (1), 42–46 (2013). https://hdl.handle.net/11616/103344
Kheirabadi, K. P., Samani, A. D., Shokohi, A. & Dehsahraei, H. S. An infestation by Hyalomma aegyptium (Acari: Ixodidae) on the lesions of break carapace of a turtle (Testudo Graeca Ibera). J. Vet. Med. Res. 3 (1), 1042. https://doi.org/10.47739/2378-931X/1042 (2016).
Google Scholar
Boucheikhchoukh, M. et al. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comparative immunology. Microbiol. Infect. Dis. 57, 39–49. https://doi.org/10.1016/j.cimid.2018.05.002 (2018).
Google Scholar
Benyahia, H. et al. Molecular and MALDI-TOF MS characterisation of Hyalomma aegyptium ticks collected from turtles and their associated microorganisms in Algeria. Ticks Tick-borne Dis. 13, 101858. https://doi.org/10.1016/j.ttbdis.2021.101858 (2022).
Google Scholar
Ammar, S. S. M. et al. Tick infestation of the mediterranean spur-thighed to toises (Testdo graece, linnaeus, 1758) from Western regions of Algeria. Folia Vet. 68 (3), 30–35. https://doi.org/10.2478/fv-2024-0024 (2024).
Google Scholar
Liu, J. & Chen, F. Biology and industrial applications of Chlorella: advances and prospects. Microalgae Biotechnology. Adv. Biochem. Eng. 2014, 153. https://doi.org/10.1007/10_2014_286 (2014).
Sonenshine, D. E. & Roe, R. M. (eds). Biology of Ticks 2 (Oxford University Press, 2013).
Camargo-Mathias, M. I. Inside the Ticks. Morphophysiology, Toxicology and Therapeutic Perspectives (Editora Unesp, 2018).
Hughes, G. M. The co-ordination of insect movements: I the walking movements of insects. J. Exp. Biol. 29 (2), 267–285. https://doi.org/10.1242/jeb.29.2.267 (1952).
Google Scholar
George, H. F. & Nuttall, F. R. S. Regeneration of the mouthparts and legs in ticks. Argas persicus, Amblyomma hebraeum and Hyalomma aegyptium. Parasitology 12 (1), 7–26. https://doi.org/10.1017/S0031182000013974 (1920).
Splinder, K. D. Chitin: its synthesis and degradation in arthropods, 1983. In: Splinder KD, Splinder-Barth M, Londershausen M (Eds) Chitin Metabolism: a Target for Drugs Against Parasites. Parasitol. Res. 76, 283–288. https://doi.org/10.1007/BF00928180 (1990).
de Oliveira, P. R., Calligaris, I. B. & Bechara, G. H. Camargo mathias, M. I. Rhipicephalus sanguineus sensu Lato (Acari: Ixodidae) nymphs: an ultrastructural study of the integument and midgut. Ticks Tick-borne Dis. 5, 834–840. https://doi.org/10.1016/j.ttbdis.2013.11.010 (2014).
Google Scholar
Sonenshine, D. E. The female reproductive system. In Biology of Ticks (ed. Sonenshine, D. E.) 280–304 (Oxford University Press, 1991).
Dillinger, S. C. G. & Kesel, A. B. Changes in the structure of the cuticle of Ixodes ricinus L. 1758 (Acari: Ixodidae) during feeding. Arthropod Struct. Dev. 31, 95–10. https://doi.org/10.1016/s1467-8039(02)00042-7 (2002).
Google Scholar
de Oliveira, P. R., Calligaris, I. P., Nunes, P. H., Bechara, G. H. & Camargo-Mathias, M. I. Fluazuron-induced morphological changes in Rhipicephalus sanguineus latreille, 1806 (Acari: Ixodidae) nymphs: an ultra-structural evaluation of the cuticle formation and digestive processes. Acta Trop. 133, 45–55. https://doi.org/10.1016/j.actatropica.2014.01.008 (2014b).
Google Scholar
de Oliveira, P. R., Calligaris, I. P., Roma, G. C. & Bechara, G. H. Camargo-Mathias, M. I. Fluazuron-induced morphophysiological changes in the cuticle formation and midgut of Rhipicephalus sanguineus latreille, 1806 (Acari: Ixodidae) nymphs. Parasitol. Res. 112, 45–58. https://doi.org/10.1007/s00436-012-3103-7 (2013).
Google Scholar
Dotson, E. M., Connat, J. L. & Diehl, P. A. Ecdysteroid titre and metabolism and cuticle deposition during embryogenesis ofthe Ixodid tick Ambyomma hebraeum (Koch). Comp. Biochem. Physiol. 110B, 155–166. https://doi.org/10.1016/0305-0491(94)00140-p (1995).
Google Scholar
Harrison, W. F. & Foelix, R. F. Microscopic Anatomy of Invertebrates, vol. 8B: Chelicerata Arthropoda. Wiley-Liss, New York. 512 ISBN: 0471180149 (1999).
Gangishetti, U. et al. Effects of benzoylphenylurea on Chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur. J. Cell. Biol. 88, 167–180. https://doi.org/10.1016/j.ejcb.2008.09.002 (2009).
Google Scholar
Mommaerts, V., Sterk, G. & Smagghe, G. Hazards and uptake of Chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Manage. Sci. 62, 752–758. https://doi.org/10.1002/ps.1238 (2006).
Google Scholar
Saenz-De-Cabezon, F. J., Perez-Moreno, I., Zalom, F. G. & Marco, V. Effects of Iufenuron on Lobesia Botrona (Lepidoptera: Tortricidae) egg, larval, and adult stages. J. Econ. Entomol. 99, 427–431. https://doi.org/10.1603/0022-0493-99.2.427 (2006).
Google Scholar
Mikolajczyk, P., Oberlander, H., Silhacek, D. L., Ishaaya, I. & Shaaya, E. Chitin synthesis in Spodoptera Frugiperda wing imaginal discs. I. Chlorfluazuron, diflubenzuron, and Teflubenzuron inhibit incorporation but not uptake of [14 C]-N-acetyl-D-glucosamine. Arch. Insect Biochem. Physiol. 25, 245–258. https://doi.org/10.1002/arch.940250306 (1994).
Google Scholar
Oberlander, H. & Silhacek, D. L. New perspectives on the mode of action of benzoylphenyl Urea insecticides. In: (eds Ishaaya, I. & Degheele, D.) Insecticides with Novel Modes of Action: Mechanism and Application. Springer, Berlin. 92–105 Doi: https://doi.org/10.1007/978-3-662-03565-8_6 (1998).
Google Scholar
Palli, S. R. & Retnakaran, A. Molecular and biochemical aspects of chitin synthesis inhibition. In: Jolle’s, P. & Muzzarelli, R. A. A. (Eds) Chitin and Chitinases. Birkhäuser Verlag. 85–98 (1999). https://doi.org/10.1007/978-3-0348-8757-1_6
Oberlander, H. & Smagghe, G. Imaginal discs and tissue cultures as targets for insecticide action. In: (ed Ishaaya, I.) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin. 133–150 Doi: https://doi.org/10.1007/978-3-642-59549-3_6 (2001).
Google Scholar
Balashov, Y. S. Dermal glands of hyalomma asiaticum. Zool. Zh. 39, 1328–1334 (1960).
Walker, A. R., Lloyd, C. M., McGuire, K., Harrison, S. J. & Hamilton, J. G. C. Integumental glands of the tick Rhipicephalus appendiculatus (Acari: Ixodidae) as potential producers of semiochemicals. J. Med. Entomol. 33, 743–759. https://doi.org/10.1093/jmedent/33.5.743 (1996a).
Google Scholar
Chen, A. C. Chitin metabolism. Arch. Insect Biochem. Physiol. 6, 267–277. https://doi.org/10.1002/arch.940060405 (1987).
Google Scholar
Kemp, D. H., Dunster, S., Binnington, K. C., Bird, P. E. & Nolan, J. Mode of action of CGA 157419 on the cattle tick Boophilus Microplus. Bull. Soc. Fr. Parasitol. 8, 1048 (1990).
Delbecque, J-P., Diehl, P. A. & O’Connor, J. D. Presence of ecdysone and ecdysterone in the tick Amblyommu Hrbrueum Koch. Experirntiu 34, 1379–1381. https://doi.org/10.1007/bf01981487 (1978).
Google Scholar
(ed Hoffmann, J. A.) Progress in Ecdysone Research. Elsevier/North-Holland, A. / New York/Oxford. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALZOOLINEINRA8050274127 (1980).
Germond, J-E., Diehl, P. A. & Morici, M. Correlations between integument structure and ecdysteroid titers in fifth-stage nymphs of the tick, Ornithodoros moubata (Murray, 1877; sensu walton, 1962). Gen. Comp. Endocrinol. 46, 255–266. https://doi.org/10.1016/0016-6480(82)90207-6 (1982).
Google Scholar
Camargo-Mathias, M. I. Comparative results of action of natural and synthetic acaricides in reproductive and salivar systems of Rhipicephalus sanguineus – Searching by a sustainable ticks control. Insecticides – Adv. Integr. Pest Manage. InTech. 391–410. https://doi.org/10.5772/29127 (2012).
Kang, H. K., Seo, C. H. & Park, Y. Marine peptides and their anti-infective activities. Mar. Drugs. 13 (1), 618–654. https://doi.org/10.3390/md13010618 (2015).
Google Scholar
Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R. & McHenry, M. P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 181, 817–831. https://doi.org/10.1016/j.jenvman.2016.06.059 (2016).
Google Scholar
Aly, S. M., ElBanna, N. & Fathi, M. Chlorella in aquaculture: challenges, opportunities, and disease prevention for sustainable development. Aquacult. Int. 32, 1559–1586. https://doi.org/10.1007/s10499-023-01229-x (2024).
Google Scholar
Wigglesworth, V. B. Structural lipids in the insect cuticle and the function of oenocytes. Tissue Cell. 2 (1), 155–179. https://doi.org/10.1016/s0040-8166(70)80013-1 (1970).
Google Scholar
Whiten, S. R., Eggleston, H. & Adelman, Z. N. Ironing out the details: exploring the role of iron and Heme in Blood-Sucking arthropods. Front. Physiol. 8, 1134. https://doi.org/10.3389/fphys.2017.01134 (2018).
Google Scholar
Mossa, A. T. H., Mohafrash, S. M. & Chandrasekaran, N. Safety of natural insecticides: toxic effects on experimental animals. Biomed. Res. Int. 2018 (1), 4308054. https://doi.org/10.1155/2018/4308054 (2018).
Google Scholar
Pradhan, J., Sahu, S. & Das, B. K. Protective effects of Chlorella vulgaris supplemented diet on antibacterial activity and immune responses in Rohu fingerlings, Labeo Rohita (Hamilton), subjected to Aeromonas hydrophila infection. Life 13 (4), 1028. https://doi.org/10.3390/life13041028 (2023).
Google Scholar