Jaishankar D, Shukla D. Genital herpes: insights into sexually transmitted infectious disease. Microb Cell. 2016;3(9):438–50.
Google Scholar
Drago F, Aragone MG, Lugani C, Rebora A. Cytomegalovirus infection in normal and immunocompromised humans A review. Dermatology. 2000;200(3):189–95.
Google Scholar
Mourinha V, Costa S, Urzal C, Guerreiro F. Lipschütz ulcers: uncommon diagnosis of vulvar ulcerations. BMJ Case Rep. 2016;2016:bcr2015214338.
Google Scholar
Heyns CF, Fisher M. The urological management of the patient with acquired immunodeficiency syndrome. BJU Int. 2005;95(5):709–16.
Google Scholar
Berntsson M, Dubicanac L, Tunbäck P, Ellström A, Löwhagen GB, Bergström T. Frequent detection of cytomegalovirus and Epstein-Barr virus in cervical secretions from healthy young women. Acta Obstet Gynecol Scand. 2013;92(6):706–10.
Google Scholar
Pyöriä L, Jokinen M, Toppinen M, Salminen H, Vuorinen T, Hukkanen V, et al. HERQ-9 Is a New Multiplex PCR for Differentiation and Quantification of All Nine Human Herpesviruses. mSphere. 2020;5(3):e00265-20.
Google Scholar
Lehtinen M, Apter D, Baussano I, Eriksson T, Natunen K, Paavonen J, et al. Characteristics of a cluster-randomized phase IV human papillomavirus vaccination effectiveness trial. Vaccine. 2015;33(10):1284–90.
Google Scholar
Lehtinen M, Öhman H, Korhonen S, Eriksson T, Kares S, Natunen K, et al. Effectiveness of Chlamydia trachomatis screening: population-based trial. In: Proceedings of the Fourteenth International Symposium on Human Chlamydial Infections. Netherlands: Gildeprint; 2018. p. 191–4.
Söderlund-Strand A, Carlson J, Dillner J. Modified general primer PCR system for sensitive detection of multiple types of oncogenic human papillomavirus. J Clin Microbiol. 2009;47(3):541–6.
Google Scholar
Söderlund-Strand A, Dillner J. High-throughput monitoring of human papillomavirus type distribution. Cancer Epidemiol Biomarkers Prev. 2013;22(2):242–50.
Google Scholar
Jensen JS, Björnelius E, Dohn B, Lidbrink P. Use of TaqMan 5’ nuclease real-time PCR for quantitative detection of Mycoplasma genitalium DNA in males with and without urethritis who were attendees at a sexually transmitted disease clinic. J Clin Microbiol. 2004;42(2):683–92.
Google Scholar
Korhonen S, Hokynar K, Eriksson T, Natunen K, Paavonen J, Lehtinen M, et al. The prevalence of HSV, HHV-6, HPV and Mycoplasma genitalium in Chlamydia trachomatis positive and Chlamydia trachomatis negative urogenital samples among young women in Finland. Pathogens. 2019;8(4):276.
Google Scholar
Nummi M, Mannonen L, Puolakkainen M. Development of a multiplex real-time PCR assay for detection of Mycoplasma pneumoniae, Chlamydia pneumoniae and mutations associated with macrolide resistance in Mycoplasma pneumoniae from respiratory clinical specimens. Springerplus. 2015;4:684.
Google Scholar
Puhakka L, Sarvikivi E, Lappalainen M, Surcel HM, Saxen H. Decrease in seroprevalence for herpesviruses among pregnant women in Finland: cross-sectional study of three time points 1992, 2002 and 2012. Infect Dis. 2016;48(5):406–10.
Koelle DM, Benedetti J, Langenberg A, Corey L. Asymptomatic reactivation of herpes simplex virus in women after the first episode of genital herpes. Ann Intern Med. 1992;116(6):433–7.
Google Scholar
Wald A, Zeh J, Selke S, Ashley RL, Corey L. Virologic characteristics of subclinical and symptomatic genital herpes infections. N Engl J Med. 1995;333(12):770–5.
Google Scholar
Kortekangas-Savolainen O, Orhanen E, Puodinketo T, Vuorinen T. Epidemiology of genital herpes simplex virus type 1 and 2 infections in southwestern Finland during a 10-year period (2003–2012). Sex Transm Dis. 2014;41(4):268–71.
Google Scholar
Tuokko H, Bloigu R, Hukkanen V. Herpes simplex virus type 1 genital herpes in young women: current trend in Northern Finland. Sex Transm Infect. 2014;90(2):160.
Google Scholar
Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28(2):313–35.
Google Scholar
Verbeek R, Vandekerckhove L, Van Cleemput J. Update on human herpesvirus 7 pathogenesis and clinical aspects as a roadmap for future research. J Virol. 2024;98(6):e0043724.
Google Scholar
Biganzoli P, Frutos MC, Venezuela F, Mosmann J, Kiguen A, Pavan J, et al. Detection of human herpesvirus 6 (HHV-6) and human herpesvirus 7 (HHV-7) DNA in endocervical samples from a positive and negative HPV woman of Córdoba, Argentina. J Clin Pathol. 2020;73(1):30–4.
Google Scholar
Baillargeon J, Piper J, Leach CT. Epidemiology of human herpesvirus 6 (HHV-6) infection in pregnant and nonpregnant women. J Clin Virol. 2000;16(3):149–57.
Google Scholar
Okuno T, Oishi H, Hayashi K, Nonogaki M, Tanaka K, Yamanishi K. Human herpesviruses 6 and 7 in cervixes of pregnant women. J Clin Microbiol. 1995;33(7):1968–70.
Google Scholar
Ohashi M, Yoshikawa T, Ihira M, Suzuki K, Suga S, Tada S, et al. Reactivation of human herpesvirus 6 and 7 in pregnant women. J Med Virol. 2002;67(3):354–8.
Google Scholar
Kaasinen E, Aavikko M, Vahteristo P, Patama T, Li Y, Saarinen S, et al. Nationwide registry-based analysis of cancer clustering detects strong familial occurrence of Kaposi sarcoma. PLoS ONE. 2013;8(1): e55209.
Google Scholar
Garib G, Hughey LC, Elmets CA, Cafardi JA, Andea AA. Atypical presentation of exophytic herpes simplex virus type 2 with concurrent cytomegalovirus infection: a significant pitfall in diagnosis. Am J Dermatopathol. 2013;35(3):371–6.
Google Scholar
Ito K, Okuno T, Sawada A, Sakai K, Kato Y, Muro K, et al. Recurrent aphthous stomatitis caused by cytomegalovirus, herpes simplex virus, and Candida species in a kidney transplant recipient: a case report. Transplant Proc. 2019;51(3):993–7.
Google Scholar
Chen CH, Lan CCE. Cutaneous cytomegalovirus and herpes simplex virus coinfection presented as refractory buttock ulcer in a patient with anti-interferon-γ syndrome. J Dermatol. 2024;51(2):e47–8.
Google Scholar
Humar A, Asberg A, Kumar D, Hartmann A, Moussa G, Jardine A, et al. An assessment of herpesvirus co-infections in patients with CMV disease: correlation with clinical and virologic outcomes. Am J Transplant. 2009;9(2):374–81.
Google Scholar
Hatayama Y, Hashimoto Y, Motokura T. Frequent co-reactivation of Epstein-Barr virus in patients with cytomegalovirus viremia under immunosuppressive therapy and/or chemotherapy. J Int Med Res. 2020;48(11):300060520972880.
Google Scholar
Kluger N, Puisto R, Suhonen J, Mazur W. Disseminated varicella zoster virus and herpes simplex virus co-infection in a lung-transplant recipient. Ann Dermatol Venereol. 2022;149(1):71–3.
Google Scholar
Deka S, Vanover J, Dessus-Babus S, Whittimore J, Howett MK, Wyrick PB, et al. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol. 2006;8(1):149–62.
Google Scholar
Prusty BK, Böhme L, Bergmann B, Siegl C, Krause E, Mehlitz A, et al. Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection. PLoS ONE. 2012;7(10): e47427.
Google Scholar
Kienka T, Varga MG, Caves J, Smith JS, Sivaraman V. Epstein-Barr virus, but not human cytomegalovirus, is associated with a high-grade human papillomavirus-associated cervical lesions among women in North Carolina. J Med Virol. 2019;91(3):450–6.
Google Scholar
Higgins CD, Swerdlow AJ, Macsween KF, Harrison N, Williams H, McAulay K, et al. A study of risk factors for acquisition of Epstein-Barr virus and its subtypes. J Infect Dis. 2007;195(4):474–82.
Google Scholar
Coonrod D, Collier AC, Ashley R, DeRouen T, Corey L. Association between cytomegalovirus seroconversion and upper genital tract infection among women attending a sexually transmitted disease clinic: a prospective study. J Infect Dis. 1998;177(5):1188–93.
Google Scholar