Word Health Organization. Leishmaniasis. 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
Rangel EF, Shaw JJ. Brazilian Sand Flies: Biology, taxonomy, medical importance and control. Cham: Springer; 2018. p. 341–80.
Ready PD, Arias JR, Freitas RA. A pilot study to control Lutzomyia umbratilis (Diptera: Psychodidae), the major vector of Leishmania braziliensis guyanensis, in a peri-urban rainforest of Manaus, Amazonas State, Brazil. Mem Inst Oswaldo Cruz. 1985;80:27–36.
Google Scholar
Young DG, Duran MA. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera:Psychodidae). American Entomology Institue, Gainesville, Florida, 1944;419
Balbino VQ, Marcondes CB, Alexander B, Luna LK, Lucena MM, Mendes AC, et al. First report of Lutzomyia (Nyssomyia) umbratilis Ward & Frahia, 1977 outside of Amazonian Region, in Recife, State of Pernambuco, Brazil (Diptera: Psychodidae: Phlebotominae). Mem Inst Oswaldo Cruz. 2001;96:315–7.
Google Scholar
de Souza Freitas MT, dos Santos CFR, de Andrade EM, Marcondes CB, de Queiroz BV, Pessoa AC. New records of phlebotomine sand flies (Diptera: Psychodidae) from the state of Alagoas, northeast of Brazil. J Med Entomol. 2018;55:242–7.
Google Scholar
Scarpassa VM, Alencar RB. Lutzomyia umbratilis, the main vector of Leishmania guyanensis, represents a novel species complex? PLoS ONE. 2012;7:e37341.
Google Scholar
de Souza Freitas MT, Ríos-Velasquez CM, Costa CRL, Figueirêdo CAS, Aragão NC, da Silva LG, et al. Phenotypic and genotypic variations among three allopatric populations of Lutzomyia umbratilis, main vector of Leishmania guyanensis. Parasites Vectors. 2015;8:448.
Google Scholar
de Souza Freitas MT, Ríos-Velasquez CM, da Silva LG, Lima Costa CR, Marcelino A, Leal-Balbino TC, et al. Analysis of the genetic structure of allopatric populations of Lutzomyia umbratilis using the period clock gene. Acta Trop. 2016;154:149–54.
Google Scholar
Arias JR, de Freitas RA. Sobre os vetores de leishmaniose cutânea na Amazônia central do Brasil. 2: incidência de flagelados em flebótomos selváticos. Acta Amaz. 1978;8:387–96.
Justiniano SCB, Chagas AC, Pessoa FAC, Queiroz RG. Comparative biology of two populations of Lutzomyia umbratilis (Diptera: Psychodidae) of Central Amazonia, Brazil, under laboratory conditions. Braz J Biol. 2004;64:227–35.
Google Scholar
Soares RP, Nogueira PM, Secundino NF, Marialva EF, Ríos-Velásquez CM, Pessoa FAC. Lutzomyia umbratilis from an area south of the Negro River is refractory to in vitro interaction with Leishmania guyanensis. Mem Inst Oswaldo Cruz. 2018;113:202–5.
Google Scholar
Telleria EL, Martins-da-Silva A, Tempone AJ, Traub-Csekö YM. Leishmania, microbiota and sand fly immunity. Parasitology. 2018;145:1336–53.
Google Scholar
Wallbanks KR, Moore JS, Bennett LR, Soren R, Molyneux DH, Carlin JM, et al. Aphid derived sugars in the neotropical sandfly Lutzomyia peruensis. Trop Med Parasitol. 1991;42:60–2.
Google Scholar
Añez N, Lugo A, Loaiza A, Nieves E, Orozco J. Sugars in the alimentary canal of Lutzomyia youngi (Diptera: Phlebotominae). Med Vet Entomol. 1994;8:38–42.
Google Scholar
Cameron MM, Pessoa FAC, Vasconcelos AW, Ward RD. Sugar meal sources for the phlebotomine sandfly Lutzomyia longipalpis in Ceará State, Brazil. Med Vet Entomol. 1995;9:263–72.
Google Scholar
Muller G, Schlein Y. Nectar and honeydew feeding of Phlebotomus papatasi in a focus of Leishmania major in Neot Hakikar oasis. J Vector Ecol. 2004;29:154–8.
Google Scholar
de Oliveira SMP, de Moraes BA, Gonçalves CA, Giordano-Dias CM, d’Almeida JM, Asensi MD, et al. Prevalência da microbiota no trato digestivo de fêmeas de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) provenientes do campo. Rev Soc Bras Med Trop. 2000;33:319–22.
Google Scholar
de Oliveira SMP, de Morais BA, Gonçalves CA, Giordano-Dias CM, Vilela ML, Brazil RP, et al. Microbiota do trato digestivo de fêmeas de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) provenientes de colônia alimentadas com sangue e com sangue e sacarose. Cad Saúde Pública. 2001;17:229–32.
Gouveia C, Asensi MD, Zahner V, Rangel EF, de Oliveira SMP. Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). Neotrop Entomol. 2008;37:597–601.
Google Scholar
Pires ACAM, Villegas LEM, Campolina TB, Orfanó AS, Pimenta PFP, Secundino NFC. Bacterial diversity of wild-caught Lutzomyia longipalpis (a vector of zoonotic visceral leishmaniasis in Brazil) under distinct physiological conditions by metagenomics analysis. Parasit Vectors. 2017;10:627.
Google Scholar
Campolina TB, Villegas LEM, Monteiro CC, Pimenta PFP, Secundino NFC. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl Trop Dis. 2020;14:e0008666.
Google Scholar
Monteiro CC, Villegas LEM, Campolina TB, Pires ACMA, Miranda JC, Pimenta PFP, et al. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasit Vectors. 2016;9:480.
Google Scholar
Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. ASM Journals. 2017;8:10–128.
SantAnna MR, Diaz-Albiter H, Aguiar-Martins K, Al Salem WS, Cavalcante RR, Dillon VM, et al. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors. 2014;7:329.
Google Scholar
Moraes CS, Seabra SH, Castro DP, Brazil RP, de Souza W, Garcia ES, et al. Leishmania (Leishmania) chagasi interactions with Serratia marcescens: ultrastructural studies, lysis and carbohydrate effects. Exp Parasitol. 2008;118:561–8.
Google Scholar
Moraes CS, Seabra SH, Albuquerque-Cunha JM, Castro DP, Genta FA, Souza W, et al. Prodigiosin is not a determinant factor in lysis of Leishmania (Viannia) braziliensis after interaction with Serratia marcescens d-mannose sensitive fimbriae. Exp Parasitol. 2009;122:84–90.
Google Scholar
Galati E. Morfologia e terminologia de Phlebotominae (Diptera: Psychodidae). Classificação e identificação de táxons das Américass. Vol I. Apostila da Disciplina Bioecologia e Identificação de Phlebotominae do Programa de Pós-Graduação em Saúde Pública. Faculdade de Saúde Pública da Universidade de São Paulo, São Paulo.133p. 2021. Available from: http://www.fsp.usp.br/egalati.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
Google Scholar
Bokulich NA, Dillon MR, Zhang Y, Rideout JR, Bolyen E, Li H, et al. q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. mSystems. 2018;3:e00219-18. https://doi.org/10.1128/msystems.00219-18.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.
Google Scholar
Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159:1277–89.
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
Google Scholar
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
Google Scholar
Machado VE, Martins PMM, Ferreira H, Ferro M, Bacci M, Pinto MC. Bacterial groups associated with Nyssomyia neivai (Diptera: Psychodidae) sandflies. J Vector Borne Dis. 2014;51:137–9.
Google Scholar
Tabbabi A, Mizushima D, Yamamoto DS, Kato H. Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies. Parasit Vectors. 2023;16:310.
Google Scholar
Vivero RJ, Jaramillo NG, Cadavid-Restrepo G, Soto SIU, Herrera CXM. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasit Vectors. 2016;9:496.
Google Scholar
Vivero RJ, Villegas-Plazas M, Cadavid-Restrepo GE, Herrera CXM, Uribe SI, Junca H. Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Sci Rep. 2019;9:17746.
Google Scholar
Tabbabi A, Watanabe S, Mizushima D, Caceres AG, Gomez EA, Yamamoto DS, et al. Comparative analysis of bacterial communities in Lutzomyia ayacuchensis populations with different vector competence to Leishmania parasites in Ecuador and Peru. Microorganisms. 2020;9:68.
Google Scholar
Volf P, Kiewegová A, Nemec A. Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitol. 2002;49:73–7.
Fraihi W, Fares W, Perrin P, Dorkeld F, Sereno D, Barhoumi W, et al. An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Negl Trop Dis. 2017;11:e0005484.
Google Scholar
Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, et al. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic zoonotic cutaneous leishmaniasis (ZCL) focus. Parasit Vectors. 2015;8:63.
Google Scholar
Li K, Chen H, Jiang J, Li X, Xu J, Ma Y. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Sci Rep. 2016;6:36406.
Google Scholar
Karimian F, Koosha M, Choubdar N, Oshaghi MA. Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLoS Negl Trop Dis. 2022;16:e0010609.
Google Scholar
Baldini F, Rougé J, Kreppel K, Mkandawile G, Mapua SA, Sikulu-Lord M, et al. First report of natural Wolbachia infection in the malaria mosquito Anopheles arabiensis in Tanzania. Parasit Vectors. 2018;11:635.
Google Scholar
Da Silva H, Oliveira TMP, Sallum MAM. Bacterial community diversity and bacterial interaction network in eight mosquito species. Genes. 2022;13:2052.
Google Scholar
Jones RT, Sanchez LG, Fierer N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE. 2013;8:e61218.
Google Scholar
Hassan MI, Al-Sawaf BM, Fouda MA, Al-Hosry S, Hammad KM. A recent evaluation of the sandfly, Phlepotomus papatasi midgut symbiotic bacteria effect on the survivorship of Leshmania major. J Anc Dis Prev Rem. 2014;2:110.
Dehghan H, Oshaghi MA, Moosa-Kazemi SH, Yakhchali B, Vatandoost H, Maleki-Ravasan N, et al. Dynamics of transgenic enterobacter cloacae expressing green fluorescent protein defensin (GFP-D) in Anopheles stephensi under laboratory condition. J Arthropod Borne Dis. 2017;11:515–32.
Google Scholar
Vivero Gómez RJ, Cadavid Restrepo GE, Moreno Herrera CX, Ospina V, Uribe SI, Robledo SM. Antagonistic effect of bacteria isolated from the digestive tract of Lutzomyia evansi against promastigotes of Leishmania infantum, antimicrobial activities and susceptibility to antibiotics. AIDS Patient Care STDs. 2016;06:760–75.
Louradour I, Monteiro CC, Inbar E, Ghosh K, Merkhofer R, Lawyer P, et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol. 2017;19:e12755.