van der Knaap MS, Schiffmann R, Mochel F, Wolf NI. Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol. 2019;18:962–72.
Google Scholar
Vanderver A, Prust M, Tonduti D, Mochel F, Hussey HM, Helman G, et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab. 2015;114:494–500.
Google Scholar
Elbaz B, Popko B. Molecular control of oligodendrocyte development. Trends Neurosci. 2019;42:263–77.
Google Scholar
Verkhratsky A, Parpura V. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis. 2016;85:254–61.
Google Scholar
Molina-Gonzalez I, Holloway RK, Jiwaji Z, Dando O, Kent SA, Emelianova K, et al. Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration. Nat Commun. 2023;14:3372.
Google Scholar
Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron. 2023;111:1222–40.e9.
Google Scholar
Kakae M, Nakajima H, Tobori S, Kawashita A, Miyanohara J, Morishima M, et al. The astrocytic TRPA1 channel mediates an intrinsic protective response to vascular cognitive impairment via LIF production. Sci Adv. 2023;9:eadh0102.
Google Scholar
Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A, et al. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron. 2014;81:588–602.
Google Scholar
Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hübner CA, et al. Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci. 2007;27:6581–9.
Google Scholar
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ. Chloride channelopathies of ClC-2. Int J Mol Sci. 2013;15:218–49.
Google Scholar
Hoegg-Beiler MB, Sirisi S, Orozco IJ, Ferrer I, Hohensee S, Auberson M, et al. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun. 2014;5:3475.
Google Scholar
Depienne C, Bugiani M, Dupuits C, Galanaud D, Touitou V, Postma N, et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol. 2013;12:659–68.
Google Scholar
Elorza-Vidal X, Gaitán-Peñas H, Estévez R. Chloride channels in astrocytes: structure, roles in brain homeostasis and implications in disease. Int J Mol Sci. 2019;20:1034.
Google Scholar
Guo Z, Lu T, Peng L, Cheng H, Peng F, Li J, et al. CLCN2-related leukoencephalopathy: a case report and review of the literature. BMC Neurol. 2019;19:156.
Google Scholar
Holla VV, Phulpagar P, Saini J, Kamble N, Pal PK, Yadav R, et al. CLCN2-related leukoencephalopathy in two unrelated patients due to novel variants. Mov Disord Clin Pract. 2023;10:1155–8.
Google Scholar
Gaitán-Peñas H, Apaja PM, Arnedo T, Castellanos A, Elorza-Vidal X, Soto D, et al. Leukoencephalopathy-causing CLCN2 mutations are associated with impaired Cl(−) channel function and trafficking. J Physiol. 2017;595:6993–7008.
Google Scholar
Göppner C, Soria AH, Hoegg-Beiler MB, Jentsch TJ. Cellular basis of ClC-2 Cl(−) channel-related brain and testis pathologies. J Biol Chem. 2021;296:100074.
Google Scholar
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017;134:351–82.
Google Scholar
Chen Z, Peng F, Liu J, Xie B, Xu P, Gan Z, et al. Generation of an iPSC line (SKLOi001-A) from a patient with CLCN2-related leukoencephalopathy. Stem Cell Res. 2020;45:101769.
Google Scholar
Xu P, Chen Z, Ma J, Shan Y, Wang Y, Xie B, et al. Biallelic CLCN2 mutations cause retinal degeneration by impairing retinal pigment epithelium phagocytosis and chloride channel function. Hum Genet. 2023;142:577–93.
Google Scholar
Cheng Y, Liu X, Sun L, Ding X. Case report: a frameshift mutation in CLCN2-related leukoencephalopathy and retinopathy. Front Genet. 2023;14:1278961.
Google Scholar
Luo W, Xu H, Xu L, Jiang W, Chen C, Chang Y, et al. Remyelination in neuromyelitis optica spectrum disorder is promoted by edaravone through mTORC1 signaling activation. Glia. 2023;71:284–304.
Google Scholar
Ding L, Zhou J, Ye L, Sun Y, Jiang Z, Gan D, et al. PPAR-γ Is critical for HDAC3-mediated control of oligodendrocyte progenitor cell proliferation and differentiation after focal demyelination. Mol Neurobiol. 2020;57:4810–24.
Google Scholar
Xie Y, Chen X, Li Y, Chen S, Liu S, Yu Z, et al. Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways. J Neuroinflamm. 2022;19:194.
Google Scholar
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, et al. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature. 2024;627:865–72.
Google Scholar
Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597:709–14.
Google Scholar
Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573:75–82.
Google Scholar
Li L, Tian E, Chen X, Chao J, Klein J, Qu Q, et al. GFAP mutations in astrocytes impair oligodendrocyte progenitor proliferation and myelination in an hiPSC model of alexander disease. Cell Stem Cell. 2018;23:239–51.e236.
Google Scholar
Świderek-Matysiak M, Oset M, Domowicz M, Galazka G, Namiecińska M, Stasiołek M. Cerebrospinal fluid biomarkers in differential diagnosis of multiple sclerosis and systemic inflammatory diseases with central nervous system involvement. Biomedicines. 2023;11:425.
Google Scholar
Marastoni D, Magliozzi R, Bolzan A, Pisani AI, Rossi S, Crescenzo F, et al. CSF levels of CXCL12 and osteopontin as early markers of primary progressive multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1083.
Google Scholar
Marastoni D, Turano E, Tamanti A, Colato E, Pisani AI, Scartezzini A, et al. Association of levels of CSF osteopontin with cortical atrophy and disability in early multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2024;11:e200265.
Google Scholar
Börnsen L, Khademi M, Olsson T, Sørensen PS, Sellebjerg F. Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis. Mult Scler. 2011;17:32–42.
Google Scholar
de Luna N, Carbayo Á, Dols-Icardo O, Turon-Sans J, Reyes-Leiva D, Illan-Gala I, et al. Neuroinflammation-related proteins NOD2 and Spp1 are abnormally upregulated in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2023;10:e200072.
Google Scholar
Quesnel MJ, Labonté A, Picard C, Bowie DC, Zetterberg H, Blennow K, et al. Osteopontin: a novel marker of pre-symptomatic sporadic Alzheimer’s disease. Alzheimers Dement. 2024;20:6008–31.
Google Scholar
Tredicine M, Camponeschi C, Pirolli D, Lucchini M, Valentini M, Geloso MC, et al. A TLR/CD44 axis regulates T cell trafficking in experimental and human multiple sclerosis. iScience. 2022;25:103763.
Google Scholar
Marcondes MC, Ojakian R, Bortell N, Flynn C, Conti B, Fox HS. Osteopontin expression in the brain triggers localized inflammation and cell death when immune cells are activated by pertussis toxin. Mediators Inflamm. 2014;2014:358218.
Google Scholar
Tuohy TM, Wallingford N, Liu Y, Chan FH, Rizvi T, Xing R, et al. CD44 overexpression by oligodendrocytes: a novel mouse model of inflammation-independent demyelination and dysmyelination. Glia. 2004;47:335–45.
Google Scholar
Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11:966–72.
Google Scholar
Ma XR, Zhu X, Xiao Y, Gu HM, Zheng SS, Li L, et al. Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing. Nat Commun. 2022;13:1225.
Google Scholar
Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487:443–8.
Google Scholar
Olabarria M, Goldman JE. Disorders of astrocytes: alexander disease as a model. Annu Rev Pathol. 2017;12:131–52.
Google Scholar
Schlett JS, Mettang M, Skaf A, Schweizer P, Errerd A, Mulugeta EA, et al. NF-κB is a critical mediator of post-mitotic senescence in oligodendrocytes and subsequent white matter loss. Mol Neurodegener. 2023;18:24.
Google Scholar
Monje M. Myelin plasticity and nervous system function. Annu Rev Neurosci. 2018;41:61–76.
Google Scholar
Rojo D, Dal Cengio L, Badner A, Kim S, Sakai N, Greene J, et al. BMAL1 loss in oligodendroglia contributes to abnormal myelination and sleep. Neuron. 2023;111:3604–18.e3611.
Google Scholar
Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 2001;21:5429–38.
Google Scholar
Park H, Han KS, Oh SJ, Jo S, Woo J, Yoon BE, et al. High glutamate permeability and distal localization of Best1 channel in CA1 hippocampal astrocyte. Mol Brain. 2013;6:54.
Google Scholar
Edwards MM, Marín de Evsikova C, Collin GB, Gifford E, Wu J, Hicks WL, et al. Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cell function in mice expressing an early stop mutation in CLCN2. Invest Ophthalmol Vis Sci. 2010;51:3264–72.
Google Scholar
Scholl UI, Stölting G, Schewe J, Thiel A, Tan H, Nelson-Williams C, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet. 2018;50:349–54.
Google Scholar
Mitsuda M, Shiozaki A, Kudou M, Shimizu H, Arita T, Kosuga T, et al. Functional analysis and clinical significance of chloride channel 2 expression in esophageal squamous cell carcinoma. Ann Surg Oncol. 2021;28:5384–97.
Google Scholar
Di Bella D, Pareyson D, Savoiardo M, Farina L, Ciano C, Caldarazzo S, et al. Subclinical leukodystrophy and infertility in a man with a novel homozygous CLCN2 mutation. Neurology. 2014;83:1217–8.
Google Scholar
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, et al. Research and progress on ClC‑2 (Review). Mol Med Rep. 2017;16:11–22.
Google Scholar
Giorgio E, Vaula G, Benna P, Lo Buono N, Eandi CM, Dino D, et al. A novel homozygous change of CLCN2 (p.His590Pro) is associated with a subclinical form of leukoencephalopathy with ataxia (LKPAT). J Neurol Neurosurg Psychiatry. 2017;88:894–6.
Google Scholar
D’Agostino D, Bertelli M, Gallo S, Cecchin S, Albiero E, Garofalo PG, et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology. 2004;63:1500–2.
Google Scholar
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia. 2019;67:2374–98.
Google Scholar
Cortez MA, Li C, Whitehead SN, Dhani SU, D’Antonio C, Huan LJ, et al. Disruption of ClC-2 expression is associated with progressive neurodegeneration in aging mice. Neuroscience. 2010;167:154–62.
Google Scholar
Sirisi S, Elorza-Vidal X, Arnedo T, Armand-Ugón M, Callejo G, Capdevila-Nortes X, et al. Depolarization causes the formation of a ternary complex between GlialCAM, MLC1 and ClC-2 in astrocytes: implications in megalencephalic leukoencephalopathy. Hum Mol Genet. 2017;26:2436–50.
Google Scholar
Walker-Caulfield ME, Guo Y, Johnson RK, McCarthy CB, Fitz-Gibbon PD, Lucchinetti CF, et al. NFκB signaling drives pro-granulocytic astroglial responses to neuromyelitis optica patient IgG. J Neuroinflamm. 2015;12:185.
Yang SX, Zhang ZC, Bai HL. ClC-5 alleviates renal fibrosis in unilateral ureteral obstruction mice. Hum Cell. 2019;32:297–305.
Google Scholar
Liu D, He H, Li GL, Chen J, Yin D, Liao ZP, et al. Mechanisms of chloride in cardiomyocyte anoxia-reoxygenation injury: the involvement of oxidative stress and NF-kappaB activation. Mol Cell Biochem. 2011;355:201–9.
Google Scholar
Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, et al. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Theranostics. 2020;10:11428–43.
Google Scholar
Lopes KP, Yu L, Shen X, Qiu Y, Tasaki S, Iatrou A, et al. Associations of cortical SPP1 and ITGAX with cognition and common neuropathologies in older adults. Alzheimers Dement. 2024;20:525–37.
Google Scholar
Murugaiyan G, Mittal A, Weiner HL. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol. 2008;181:7480–8.
Google Scholar
Spitzer D, Guérit S, Puetz T, Khel MI, Armbrust M, Dunst M, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol. 2022;144:305–37.
Google Scholar
Cappellano G, Vecchio D, Magistrelli L, Clemente N, Raineri D, Barbero Mazzucca C, et al. The Yin-Yang of osteopontin in nervous system diseases: damage versus repair. Neural Regen Res. 2021;16:1131–7.
Google Scholar
Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science. 2001;294:1731–5.
Google Scholar
Clemente N, Comi C, Raineri D, Cappellano G, Vecchio D, Orilieri E, et al. Role of anti-osteopontin antibodies in multiple sclerosis and experimental autoimmune encephalomyelitis. Front Immunol. 2017;8:321.
Google Scholar
Lan Y, Zhang X, Liu S, Guo C, Jin Y, Li H, et al. Fate mapping of Spp1 expression reveals age-dependent plasticity of disease-associated microglia-like cells after brain injury. Immunity. 2024;57:349–63.e349.
Google Scholar
Luo M, Qiu Z, Tang X, Wu L, Li S, Zhu J, et al. Inhibiting cyclin B1-treated pontine infarction by suppressing proliferation of SPP1+ microglia. Mol Neurobiol. 2023;60:1782–96.
Google Scholar
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat Neurosci. 2023;26:406–15.
Google Scholar
Boonpraman N, Yoon S, Kim CY, Moon JS, Yi SS. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson’s disease. Redox Biol. 2023;62:102698.
Google Scholar
Jakovac H, Grubić Kezele T, Šućurović S, Mulac-Jeričević B, Radošević-Stašić B. Osteopontin-metallothionein I/II interactions in experimental autoimmune encephalomyelitis. Neuroscience. 2017;350:133–45.
Google Scholar
Schröder LJ, Mulenge F, Pavlou A, Skripuletz T, Stangel M, Gudi V, et al. Dynamics of reactive astrocytes fosters tissue regeneration after cuprizone-induced demyelination. Glia. 2023;71:2573–90.
Google Scholar
Dzwonek J, Wilczynski GM. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci. 2015;9:175.
Google Scholar
Sato T, Shirai R, Isogai M, Yamamoto M, Miyamoto Y, Yamauchi J. Hyaluronic acid and its receptor CD44, acting through TMEM2, inhibit morphological differentiation in oligodendroglial cells. Biochem Biophys Res Commun. 2022;624:102–11.
Google Scholar
Dooves S, Bugiani M, Postma NL, Polder E, Land N, Horan ST, et al. Astrocytes are central in the pathomechanisms of vanishing white matter. J Clin Invest. 2016;126:1512–24.
Google Scholar
Quintela-López T, Ortiz-Sanz C, Serrano-Regal MP, Gaminde-Blasco A, Valero J, Baleriola J, et al. Aβ oligomers promote oligodendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling. Cell Death Dis. 2019;10:445.
Google Scholar
Jiang W, Zhu F, Xu H, Xu L, Li H, Yang X, et al. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. Sci Adv. 2023;9:eadg8148.
Google Scholar
Song Y, Jiang W, Afridi SK, Wang T, Zhu F, Xu H, et al. Astrocyte-derived CHI3L1 signaling impairs neurogenesis and cognition in the demyelinated hippocampus. Cell Rep. 2024;43:114226.
Google Scholar