Gavas, S., Quazi, S. & Karpiński, T. M. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett. 16 (1), 173 (2021).
Google Scholar
Xia, Y., Sun, M., Huang, H. & Jin, W. L. Drug repurposing for cancer therapy. Signal. Transduct. Target. Therapy. 9 (1), 92. https://doi.org/10.1038/s41392-024-01808-1 (2024).
Google Scholar
Overchuk, M., Weersink, R. A., Wilson, B. C. & Zheng, G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano. 17 (9), 7979–8003 (2023).
Google Scholar
Jiang, H. et al. Rational design of Guanidinium-Based Bio-MCOF as a multifunctional nanocatalyst in tumor cells for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces. 15 (50), 58593–58604. https://doi.org/10.1021/acsami.3c13555 (2023).
Google Scholar
Pereira, C. F. et al. A. A. Bifunctional porphyrin-based nano-metal–organic frameworks: catalytic and chemosensing studies. Inorg. Chem. 57 (7), 3855–3864 (2018).
Google Scholar
Murugan, C., Venkatesan, S. & Kannan, S. Cancer therapeutic proficiency of dual-targeted mesoporous silica nanocomposite endorses combination drug delivery. ACS Omega. 2 (11), 7959–7975 (2017).
Google Scholar
Icten, O., Erdem Tuncdemir, B. & Mergen, H. Design and development of gold-loaded and boron-attached multicore manganese ferrite nanoparticles as a potential agent in biomedical applications. ACS Omega. 7 (23), 20195–20203 (2022).
Google Scholar
Dai, T. et al. A nanocomposite hydrogel with potent and Broad-Spectrum antibacterial activity. ACS Appl. Mater. Interfaces. 10 (17), 15163–15173. https://doi.org/10.1021/acsami.8b02527 (2018).
Google Scholar
Wu, T., Li, X., Xue, J. & Xia, Y. Rational fabrication of Functionally-Graded surfaces for biological and biomedical applications. Acc. Mater. Res. 5 (12), 1507–1519 (2024).
Google Scholar
Park, J., Jiang, Q., Feng, D., Mao, L. & Zhou, H. C. Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 138 (10), 3518–3525 (2016).
Google Scholar
Iman, K. et al. Novel {cu 4} and {cu 4 cd 6} clusters derived from flexible aminoalcohols: synthesis, characterization, crystal structures, and evaluation of anticancer properties. Dalton Trans. 50 (34), 11941–11953 (2021).
Google Scholar
Zia, H., Shamim, M. A., Zeeshan, M., Khan, M. Y. & Shahid, M. Metal organic frameworks as a versatile platform for the radioactive iodine capture: state of the Art developments and future prospects. Inorg. Chim. Acta. 539, 121026 (2022).
Khan, M. Y. et al. Facile synthesis of a three-dimensional Ln-MOF@ FCNT composite for the fabrication of a symmetric supercapacitor device with ultra-high energy density: overcoming the energy storage barrier. Dalton Trans. 53 (17), 7477–7497 (2024).
Google Scholar
Zeeshan, M. & Shahid, M. State of the Art developments and prospects of metal–organic frameworks for energy applications. Dalton Trans. 51 (5), 1675–1723 (2022).
Google Scholar
Zeeshan, M., Khan, M. Y., Khan, R., Mehtab, M. & Shahid, M. Turning CO 2 into treasure: the promise of metal–organic frameworks. CrystEngComm 26 (39), 5489–5517 (2024).
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341 (6149), 1230444 (2013).
Google Scholar
Luo, H. B. et al. Rapid, biomimetic degradation of a nerve agent simulant by incorporating imidazole bases into a metal–organic framework. ACS Catal. 11 (3), 1424–1429 (2021).
Google Scholar
Rabiee, N. et al. Natural polymers decorated MOF-MXene nanocarriers for co-delivery of doxorubicin/pcrispr. ACS Appl. Bio Mater. 4 (6), 5106–5121 (2021).
Google Scholar
Cheng, E. et al. Analysis of survival among adults with early-onset colorectal cancer in the National cancer database. JAMA Netw. Open. 4 (6), e2112539–e2112539 (2021).
Google Scholar
Arambula, J. F. & Sessler, J. L. Porphyrinoid Drug Conjugates Chem 6 (7), 1634–1651. (2020).
Google Scholar
Asano, N., Uemura, S., Kinugawa, T., Akasaka, H. & Mizutani, T. Synthesis of Biladienone and bilatrienone by coupled oxidation of tetraarylporphyrins. J. Org. Chem. 72 (14), 5320–5326 (2007).
Google Scholar
Gao, W. Y., Chrzanowski, M. & Ma, S. Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev. 43 (16), 5841–5866 (2014).
Google Scholar
Wang, Z. et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev. 439, 213945 (2021).
Oliveira, M. S. et al. Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J. Cancer Sci. Ther. 5 (2), 52–57. https://doi.org/10.4172/1948-5956.1000184 (2013). From NLM.
Google Scholar
Abdullah, C. S. et al. Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports 9 (1), 2002. (2019). https://doi.org/10.1038/s41598-018-37862-3
Lee, H. et al. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J. Controlled Release. 283, 190–199 (2018).
Wu, H. et al. Synthesis of a Clay-Based nanoagent for photonanomedicine. ACS Appl. Mater. Interfaces. 12 (1), 390–399. https://doi.org/10.1021/acsami.9b19930 (2020). From NLM.
Google Scholar
Zou, Y. et al. Single-Molecule Förster resonance energy Transfer-Based photosensitizer for synergistic photodynamic/photothermal therapy. ACS Cent. Sci. 7 (2), 327–334. https://doi.org/10.1021/acscentsci.0c01551 (2021).
Google Scholar
Sun, C. Y. et al. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics 8 (11), 2939 (2018).
Google Scholar
Rabiee, N. et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to alzheimer’s disease. Adv. Ther. 4 (3), 2000076 (2021).
Nejad, S. T., Rahimi, R., Rabbani, M. & Rostamnia, S. Facile photosynthesis of novel porphyrin-derived nanocomposites containing ag, ag/au, and ag/cu for photobactericidal study. Sci. Rep. 13 (1), 8580. https://doi.org/10.1038/s41598-023-34745-0 (2023).
Google Scholar
Tehrani Nejad, S., Rahimi, R., Najafi, M. & Rostamnia, S. Sustainable gold nanoparticle (Au-NP) growth within interspaces of porphyrinic Zirconium-Based Metal–Organic frameworks: green synthesis of PCN-224/Au-NPs and its anticancer effect on colorectal cancer cells assay. ACS Appl. Mater. Interfaces. 16 (3), 3162–3170. https://doi.org/10.1021/acsami.3c15398 (2024).
Google Scholar
Han, H. H. et al. Bimetallic Hyaluronate-Modified au@pt nanoparticles for noninvasive photoacoustic imaging and photothermal therapy of skin cancer. ACS Appl. Mater. Interfaces. 15 (9), 11609–11620. https://doi.org/10.1021/acsami.3c01858 (2023). From NLM.
Google Scholar
Cole, A. J., Yang, V. C. & David, A. E. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29 (7), 323–332. https://doi.org/10.1016/j.tibtech.2011.03.001 (2011). From NLM.
Google Scholar
Kesharwani, P. et al. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer. 22 (1), 98. https://doi.org/10.1186/s12943-023-01798-8 (2023).
Google Scholar
Nejabat, M. et al. An overview on gold nanorods as versatile nanoparticles in cancer therapy. J. Controlled Release. 354, 221–242 (2023).
Burz, C., Pop, V., Silaghi, C., Lupan, I. & Samasca, G. Prognosis and treatment of gastric cancer: A 2024 update. Cancers (Basel). 16 (9). https://doi.org/10.3390/cancers16091708 (2024). From NLM.
Guan, W. L., He, Y. & Xu, R. H. Gastric cancer treatment: recent progress and future perspectives. J. Hematol. Oncol. 16 (1), 57. https://doi.org/10.1186/s13045-023-01451-3 (2023).
Google Scholar
Li, H., Shen, M. & Wang, S. Current therapies and progress in the treatment of advanced gastric cancer. Front. Oncol. 14, 1327055. https://doi.org/10.3389/fonc.2024.1327055 (2024). From NLM.
Google Scholar
Arnold, M. et al. Global burden of 5 major types of Gastrointestinal cancer. Gastroenterology 159 (1), 335–349 (2020). e315.
Google Scholar
Chunarkar-Patil, P. et al. Anticancer drug discovery based on natural products: from computational approaches to clinical studies. Biomedicines 12 (1). https://doi.org/10.3390/biomedicines12010201 (2024). From NLM.
Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal. Transduct. Target. Therapy. 6 (1), 201. https://doi.org/10.1038/s41392-021-00572-w (2021).
Google Scholar
Cui, W. et al. Discovering anti-cancer drugs via computational methods. Front. Pharmacol. 11, 733 (2020).
Google Scholar
Ye, M. et al. Advances and challenges of metal-organic frameworks in the diagnosis and treatment of gastric cancer. Mater. Today Chem. 43, 102517 (2025).
Yu, Z. et al. Biomimetic Metal-Organic Framework Nanoparticles for Synergistic Combining of SDT-Chemotherapy Induce Pyroptosis in Gastric Cancer, Front. Bioeng. Biotechnol., 10, 796820. 2022. (2022).
Zhao, D. et al. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J. Nanobiotechnol. 20 (1), 421 (2022).
Demir Duman, F. et al. MOF-808 nanoparticles as a Cancer-Targeted dual drug delivery system for carboplatin and Floxuridine. ACS Appl. Nano Mater. 5 (10), 13862–13873. https://doi.org/10.1021/acsanm.2c01632 (2022).
Google Scholar
Kong, J. et al. CPP10-targeted photoactivatable MOF nanosystem for combined photodynamic Therapy – Chemotherapy of cancer. J. Science: Adv. Mater. Devices. 9 (3), 100761. https://doi.org/10.1016/j.jsamd.2024.100761 (2024).
Google Scholar
Nazri, S. et al. Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. Sep. Purif. Technol. 259, 118197 (2021).
Tehrani Nejad, S., Rahimi, R., Najafi, M. & Rostamnia, S. J. A. A. M. Interfaces. Sustainable gold nanoparticle (Au-NP) growth within interspaces of porphyrinic Zirconium-Based Metal–Organic frameworks: green synthesis of PCN-224/Au-NPs and its anticancer effect on colorectal cancer cells assay. (2024).
Gholami, N. et al. Cytotoxic and apoptotic properties of a novel nano-toxin formulation based on biologically synthesized silver nanoparticle loaded with Recombinant truncated Pseudomonas exotoxin A. J. Cell. Physiol. 235 (4), 3711–3720 (2020).
Google Scholar
Zong, Y. et al. Synthesis of porphyrin Zr-MOFs for the adsorption and photodegradation of antibiotics under visible light. ACS Omega. 6 (27), 17228–17238 (2021).
Google Scholar
Moradi, E., Rahimi, R., Farahani, Y. D. & Safarifard, V. Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as a luminescent sensor for highly selective sensing of Cd2 + and Br – ions and THF small molecule. J. Solid State Chem. 282, 121103 (2020).
Xu, W., Dong, M., Di, L. & Zhang, X. A facile method for Preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials 9 (10), 1432 (2019).
Google Scholar
Bonnett, B. L. et al. PCN-222 metal–organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes. ACS Appl. Mater. Interfaces. 12 (13), 15765–15773 (2020).
Google Scholar
Karamzadeh, S., Sanchooli, E., Oveisi, A. R., Daliran, S. & Luque, R. Visible-LED-light-driven photocatalytic synthesis of N-heterocycles mediated by a polyoxometalate-containing mesoporous zirconium metal-organic framework. Appl. Catal. B. 303, 120815 (2022).
Carrasco, S., Sanz-Marco, A. & Martín-Matute, B. J. O. Fast and robust synthesis of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2. Organometallics 38 (18), 3429–3435 (2019).
Zuliani, A., Castillejos, M. C. & Khiar, N. J. G. C. Continuous flow synthesis of PCN-222 (MOF-545) with controlled size and morphology: a sustainable approach for efficient production. Green Chem. 25 (24), 10596–10610 (2023).
Safaei Moghaddam, Z., Kaykhaii, M., Khajeh, M. & Oveisi, A. R. J. B. C. PCN-222 metal–organic framework: a selective and highly efficient sorbent for the extraction of aspartame from gum, juice, and diet soft drink before its spectrophotometric determination. BMC Chem. 14 (1), 19 (2020).
Nazri, S. et al. Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. 259, 118197. (2021).
Afrin, S., Yang, X., Morris, A. J. & Grumstrup, E. M. J. J. o. t. A. C. S. Rapid Exciton Transport and Structural Defects in Individual Porphyrinic Metal Organic Framework Microcrystals. (2024).
Musib, D. et al. Red light-activable biotinylated copper (II) complex-functionalized gold nanocomposite (Biotin-Cu@ AuNP) towards targeted photodynamic therapy. J. Inorg. Biochem. 243, 112183 (2023).
Google Scholar
Chakraborty, D. et al. Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity. Mater. Today Chem. 24, 100882 (2022).
Kim, J. Y. & Park, J. H. ROS-dependent caspase-9 activation in hypoxic cell death. FEBS Lett. 549 (1–3), 94–98 (2003).
Google Scholar
Matés, J. M. & Sánchez-Jiménez, F. M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32 (2), 157–170 (2000).
Google Scholar