Exploring mutational possibilities of KPC variants to reach high level resistance to cefiderocol

  • Logan, L. K. & Weinstein, R. A. The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 215, S28–S36 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, X., Zhang, H. & Du, H. Carbapenemases in enterobacteriaceae: detection and antimicrobial therapy. Front. Microbiol. 10, 1823 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karampatakis, T., Tsergouli, K. & Lowrie, K. Efficacy and safety of ceftazidime-avibactam compared to other antimicrobials for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae strains, a systematic review and meta-analysis. Microb. Pathog. 179, 106090 (2023).

    PubMed 

    Google Scholar 

  • Zhanel, G. G. et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs 78, 65–98 (2018).

    PubMed 

    Google Scholar 

  • Zhanel, G. G. et al. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73, 159–177 (2013).

    PubMed 

    Google Scholar 

  • Hobson, C. A. et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: An evolutionary overview. Antimicrob. Agents Chemother. 66, e0044722 (2022).

    PubMed 

    Google Scholar 

  • Ding, L. et al. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin. Microbiol. Rev. 36, e0000823 (2023).

    PubMed 

    Google Scholar 

  • Paul, M. et al. European society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 28, 521–547 (2022).

    PubMed 

    Google Scholar 

  • Tamma, P. D. et al. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 75, 187–212 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaibani, P., Amadesi, S., Lazzarotto, T. & Ambretti, S. Genome characterization of a Klebsiella pneumoniae co-producing OXA-181 and KPC-121 resistant to ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam and cefiderocol isolated from a critically ill patient. J. Glob. Antimicrob. Resist. 30, 262–264 (2022).

    PubMed 

    Google Scholar 

  • Gato, E. et al. In vitro development of imipenem/relebactam resistance in KPC-producing Klebsiella pneumoniae involves multiple mutations including OmpK36 disruption and KPC modification. Int. J. Antimicrob. Agents 62, 106935 (2023).

    PubMed 

    Google Scholar 

  • Lombardo, D., Ambretti, S., Lazzarotto, T. & Gaibani, P. In vitro activity of imipenem-relebactam against KPC-producing Klebsiella pneumoniae resistant to ceftazidime-avibactam and/or meropenem-vaborbactam. Clin. Microbiol. Infect. 28, 749–751 (2022).

    PubMed 

    Google Scholar 

  • El-Lababidi, R. M. & Rizk, J. G. Cefiderocol: A siderophore cephalosporin. Ann. Pharmacother. 54, 1215–1231 (2020).

    PubMed 

    Google Scholar 

  • Sato, T. & Yamawaki, K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 69, S538–S543 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aoki, T. et al. Cefiderocol (S-649266), A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: Structure activity relationship. Eur. J. Med. Chem. 155, 847–868 (2018).

    PubMed 

    Google Scholar 

  • Jousset, A. B. et al. Rapid selection of a cefiderocol-resistant Escherichia coli producing NDM-5 associated with a single amino acid substitution in the CirA siderophore receptor. J. Antimicrob. Chemother. 78, 1125–1127 (2023).

    PubMed 

    Google Scholar 

  • Poirel, L., Sadek, M., Kusaksizoglu, A. & Nordmann, P. Co-resistance to ceftazidime-avibactam and cefiderocol in clinical isolates producing KPC variants. Eur. J. Clin. Microbiol. Infect. Dis. 41, 677–680 (2022).

    PubMed 

    Google Scholar 

  • Hobson, C. A. et al. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 27(1172), e7-1172.e10 (2021).

    Google Scholar 

  • Castillo-Polo, J. A. et al. Outbreak by KPC-62-producing ST307 Klebsiella pneumoniae isolates resistant to ceftazidime/avibactam and cefiderocol in a university hospital in Madrid Spain. J. Antimicrob. Chemother. 78, 1259–1264 (2023).

    PubMed 

    Google Scholar 

  • Amadesi, S. et al. Complete Genome sequence of a klebsiella pneumoniae strain carrying novel variant blaKPC-203, Cross-resistant to ceftazidime/avibactam and cefiderocol, but susceptible to carbapenems, isolated in Italy, 2023. Pathogens 13, 507 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Giufrè, M. et al. Detection of KPC-216, a novel KPC-3 variant, in a clinical isolate of Klebsiella pneumoniae ST101 Co-resistant to ceftazidime-avibactam and cefiderocol. Antibiotics 13, 507 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Birgy, A., Nnabuife, C. & Palzkill, T. The mechanism of ceftazidime and cefiderocol hydrolysis by D179Y variants of KPC carbapenemases is similar and involves the formation of a long-lived covalent intermediate. Antimicrob. Agents Chemother. 68, e0110823 (2024).

    PubMed 

    Google Scholar 

  • Salverda, M. L. M., De Visser, J. A. G. M. & Barlow, M. Natural evolution of TEM-1 β-lactamase: Experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    PubMed 

    Google Scholar 

  • Fröhlich, C., Sørum, V., Tokuriki, N., Johnsen, P. J. & Samuelsen, Ø. Evolution of β-lactamase-mediated cefiderocol resistance. J. Antimicrob. Chemother. 77, 2429–2436 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaibani, P., Ambretti, S., Campoli, C., Viale, P. & Re, M. C. Genomic characterization of a Klebsiella pneumoniae ST1519 resistant to ceftazidime/avibactam carrying a novel KPC variant (KPC-36). Int. J. Antimicrob. Agents 55, 105816 (2020).

    PubMed 

    Google Scholar 

  • Hemarajata, P. & Humphries, R. M. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J. Antimicrob. Chemother. 74, 1241–1243 (2019).

    PubMed 

    Google Scholar 

  • Cano, Á. et al. Use of carbapenems in the combined treatment of emerging ceftazidime/avibactam-resistant and carbapenem-susceptible KPC-producing Klebsiella pneumoniae infections: Report of a case and review of the literature. J. Glob. Antimicrob. Resist. 22, 9–12 (2020).

    PubMed 

    Google Scholar 

  • Naas, T. et al. Beta-lactamase database (BLDB)—structure and function. J Enzyme Inhib Med Chem 32, 917–919 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • European Committee on Antimicrobial Susceptibility Testing. Data from the EUCAST MIC distribution website, last accessed 26 Sept 2024. https://www.eucast.org (2024).

  • Ito, A. et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob. Agents Chemother. 62, e01454-e1517 (2018).

    PubMed 

    Google Scholar 

  • Kriz, R. et al. In vitro resistance development gives insights into molecular resistance mechanisms against cefiderocol. J. Antibiot. https://doi.org/10.1038/s41429-024-00762-y (2024).

    Article 

    Google Scholar 

  • Wang, Q. et al. Occurrence of high levels of cefiderocol resistance in carbapenem-resistant escherichia coli before its approval in China: A report from China CRE-network. Microbiol. Spectr. 10, e02670-e2721 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, S. W. et al. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat. Commun. 5, 4910 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • McHugh, J. P. et al. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J. Biol. Chem. 278, 29478–29486 (2003).

    PubMed 

    Google Scholar 

  • McPherson, C. J. et al. Clinically relevant Gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophore-conjugated monocarbam. Antimicrob. Agents Chemother. 56, 6334–6342 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hobson, C. A. et al. Impact of anticancer chemotherapy on the extension of beta-lactamase spectrum: an example with KPC-type carbapenemase activity towards ceftazidime-avibactam. Sci. Rep. 10, 589 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2, 2006–0008 (2006).

    PubMed Central 

    Google Scholar 

  • Cherepanov, P. P. & Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14 (1995).

    PubMed 

    Google Scholar 

  • Chaveroche, M. K., Ghigo, J. M. & d’Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading