WHO. World malaria report: addressing inequity in the global malaria response. Geneva: World Health Organization; 2024.
PNLP. Rapport d’activités du Programme National de Lutte contre le Paludisme (PNLP), Brazzaville: République du Congo. 2024.
Oladipo HJ, Tajudeen YA, Oladunjoye IO, Yusuff SI, Yusuf RO, Oluwaseyi EM, et al. Increasing challenges of malaria control in sub-Saharan Africa: priorities for public health research and policymakers. Ann Med Surg. 2022;81: 104366.
Datoo MS, Dicko A, Tinto H, Ouédraogo JB, Hamaluba M, Olotu A, et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet. 2024;403:533–44.
Google Scholar
Dobaño C, Ubillos I, Jairoce C, Gyan B, Vidal M, Jiménez A, et al. RTS,S/AS01E immunization increases antibody responses to vaccine-unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children: a case-control study. BMC Med. 2019;17: 157.
Google Scholar
WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization. Geneva: World Health Organization; 2023.
RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.
Datoo MS, Natama HM, Somé A, Bellamy D, Traoré O, Rouamba T, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect Dis. 2022;22:1728–36.
Google Scholar
Sinnis P, Fidock DA. The RTS,S vaccine-a chance to regain the upper hand against malaria? Cell. 2022;185:750–4.
Google Scholar
Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. 2017;7:46621.
Google Scholar
Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Engl J Med. 2015;373:2025–37.
Google Scholar
Chaudhury S, MacGill RS, Early AM, Bolton JS, King CR, Locke E, Pierson T, Wirth DF, Neafsey DE, Bergmann-Leitner ES. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine. 2021;39(6):968–75.
Google Scholar
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines. 2021;20:113–25.
Google Scholar
Mohamed NS, AbdElbagi H, Elsadig AR, Ahmed AE, Mohammed YO, Elssir LT, Elnour MB, Ali Y, Ali MS, Altahir O, et al. Assessment of genetic diversity of Plasmodium falciparum circumsporozoite protein in Sudan: the RTS,S leading malaria vaccine candidate. Malar J. 2021;20:436.
Google Scholar
Amegashie EA. Population genetic analysis of the Plasmodium falciparum circumsporozoite protein in two distinct ecological regions in Ghana. Malar J. 2020;19: 437.
Google Scholar
Osoro CB, Ochodo E, Kwambai TK, Otieno JA, Were L, Sagam CK, Owino EJ, Kariuki S, Ter Kuile FO, Hill J. Policy uptake and implementation of the RTS,S/AS01 malaria vaccine in sub-Saharan African countries: status 2 years following the WHO recommendation. BMJ Glob Health. 2024. https://doi.org/10.1136/bmjgh-2023-014719.
Google Scholar
Baina MT, Djontu JC, Mbama Ntabi JD, Mfoutou Mapanguy CC, Lissom A, Vouvoungui CJ, Boumpoutou RK, Mouanga AM, Nguimbi E, Ntoumi F. Polymorphisms in the Pfcrt, Pfmdr1, and Pfk13 genes of Plasmodium falciparum isolates from southern Brazzaville, Republic of Congo. Sci Rep. 2024;14: 27988.
Google Scholar
Baina MT, Lissom A, Assioro Doulamo NV, Djontu JC, Umuhoza DM, Mbama-Ntabi JD, Diafouka-Kietela S, Mayela J, Missontsa G, Wondji C, et al. Comparative study of Plasmodium falciparum msp-1 and msp-2 genetic diversity in isolates from rural and urban areas in the south of Brazzaville, Republic of Congo. Pathogens. 2023. https://doi.org/10.3390/pathogens12050742.
Google Scholar
Baina MT, Djontu JC, Lissom A, Doulamo NVA, Umuhoza DM, Ntabi JDM, Vouvoungui CJ, Boumpoutou RK, Mayela J, Diafouka-Kietela S, et al. Plasmodium falciparum msp-1 and msp-2 genetic diversity and multiplicity of infection in isolates from Congolese patients in the Republic of Congo. Parasitol Res. 2023;122:2433–43.
Google Scholar
Samba G, Nganga D. Minimum and maximum temperature trends in Congo-Brazzaville: 1932–2010. Atmos Clim Sci. 2014;04: No.03:27.
Mbama Ntabi JD, Lissom A, Djontu JC, Diafouka-Kietela S, Vouvoungui C, Boumpoutou RK, Mayela J, Nguiffo-Nguete D, Nkemngo FN, Ndo C, et al. Prevalence of non-Plasmodium falciparum species in southern districts of Brazzaville in the Republic of the Congo. Parasit Vectors. 2022;15:209.
Google Scholar
Ntabi JDM, Lissom A, Djontu JC, Nkemngo FN, Diafouka-Kietela S, Mayela J, Missontsa G, Djogbenou L, Ndo C, Wondji C, et al. Entomological indicators of Plasmodium species transmission in Goma Tsé-Tsé and Madibou districts, in the Republic of Congo. Malar J. 2024;23:21.
Google Scholar
WHO. Malaria parasite counting. Geneva: World Health Organization; 2016.
Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol. 1993;58:283–92.
Google Scholar
Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, Choudhary V, Mittra P, Lumb V, Bharti PK, et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS ONE. 2012;7: e43430.
Google Scholar
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
Google Scholar
Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.
Google Scholar
Kojom Foko LP, Hawadak J, Eboumbou Moukoko CE, Das A, Singh V. Genetic analysis of the circumsporozoite gene in Plasmodium falciparum isolates from Cameroon: implications for efficacy and deployment of RTS,S/AS01 vaccine. Gene. 2024;927: 148744.
Google Scholar
Kayentao K, Ongoiba A, Preston AC, Healy SA, Hu Z, Skinner J, Doumbo S, Wang J, Cisse H, Doumtabe D, et al. Subcutaneous administration of a monoclonal antibody to prevent malaria. N Engl J Med. 2024;390:1549–59.
Google Scholar
Bongfen SE, Ntsama PM, Offner S, Smith T, Felger I, Tanner M, Alonso P, Nebie I, Romero JF, Silvie O, et al. The N-terminal domain of Plasmodium falciparum circumsporozoite protein represents a target of protective immunity. Vaccine. 2009;27:328–35.
Google Scholar
Mohamed NS, Ali Albsheer MM, Abdelbagi H, Siddig EE, Mohamed MA, Ahmed AE, Omer RA, Muneer MS, Ahmed A, Osman HA, et al. Genetic polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates from Sudan. Malar J. 2019;18:333.
Google Scholar
He ZQ, Zhang QQ, Wang D, Hu YB, Zhou RM, Qian D, Yang CY, Lu DL, Li SH, Liu Y, Zhang HW. Genetic polymorphism of circumsporozoite protein of Plasmodium falciparum among Chinese migrant workers returning from Africa to Henan Province. Malar J. 2022;21:248.
Google Scholar
Rathore D, Sacci JB, de la Vega P, McCutchan TF. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J Biol Chem. 2002;277:7092–8.
Google Scholar
Dundas K, Shears MJ, Sinnis P, Wright GJ. Important extracellular interactions between Plasmodium sporozoites and host cells required for infection. Trends Parasitol. 2019;35:129–39.
Google Scholar
Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, Adu B, López-Méndez B, Kaviraj S, Locke E, et al. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. J Biol Chem. 2020;295:403–14.
Google Scholar
Huang HY, Liang XY, Lin LY, Chen JT, Ehapo CS, Eyi UM, Li J, Jiang TT, Zheng YZ, Zha GC, et al. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein on Bioko Island, Equatorial Guinea and global comparative analysis. Malar J. 2020;19:245.
Google Scholar
Escalante AA, Grebert HM, Isea R, Goldman IF, Basco L, Magris M, Biswas S, Kariuki S, Lal AA. A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areas–XVI. asembo bay cohort project. Mol Biochem Parasitol. 2002;125:83–90.
Google Scholar
Lê HG, Kang JM, Moe M, Jun H, Thái TL, Lee J, Myint MK, Lin K, Sohn WM, Shin HJ, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.
Google Scholar
Sedegah M, Kim Y, Ganeshan H, Huang J, Belmonte M, Abot E, Banania JG, Farooq F, McGrath S, Peters B, et al. Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP). Malar J. 2013;12: 185.
Google Scholar
Lynch M. The evolution of genetic networks by non-adaptive processes. Nat Rev Genet. 2007;8:803–13.
Google Scholar
Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES. Positive natural selection in the human lineage. Science. 2006;312:1614–20.
Google Scholar