Klockgether, T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 9, 94–104 (2010).
Google Scholar
Teive, H. A. G. & Ashizawa, T. Primary and secondary ataxias. Curr. Opin. Neurol. 28, 413–422 (2015).
Google Scholar
Coarelli, G. et al. The inherited cerebellar ataxias: an update. J. Neurol. 270, 208–222 (2023).
Google Scholar
Divya, K. P. & Kishore, A. Treatable cerebellar ataxias. Clin. Park. Relat. Disord. 3, 100053 (2020).
Muñiz-Castrillo, S. et al. Novelties in autoimmune and paraneoplastic cerebellar ataxias: twenty years of progresses. Cerebellum 21, 573–591 (2022).
Google Scholar
Mitoma, H., Hadjivassiliou, M. & Honnorat, J. Guidelines for treatment of immune-mediated cerebellar ataxias. Cerebellum Ataxias 2, 14 (2015).
Google Scholar
Joubert, B. & Honnorat, J. Nonparaneoplastic autoimmune cerebellar ataxias. Curr. Opin. Neurol. 32, 484–492 (2019).
Google Scholar
Hadjivassiliou, M. et al. Diagnostic criteria for primary autoimmune cerebellar ataxia — guidelines from an international task force on immune-mediated cerebellar ataxias. Cerebellum 19, 605–610 (2020).
Google Scholar
Narayan, R. N., McKeon, A. & Fife, T. D. Autoimmune vestibulocerebellar syndromes. Semin. Neurol. 40, 97–115 (2020).
Google Scholar
Simard, C. et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol. Neuroimmunol. Neuroinflamm. 7, e699 (2020).
Google Scholar
Irani, S. R. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133, 2734–2748 (2010).
Google Scholar
Lancaster, E. et al. Investigations of CASPR2, an autoantigen of encephalitis and neuromyotonia. Ann. Neurol. 69, 303–311 (2011).
Google Scholar
Joubert, B. et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 4, e371 (2017).
Google Scholar
Becker, E. B. et al. Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry 83, 437–440 (2012).
Google Scholar
Benoit, J. et al. Early-stage contactin-associated protein-like 2 limbic encephalitis: clues for diagnosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200041 (2023).
Google Scholar
Mandel-Brehm, C. et al. Kelch-like protein 11 antibodies in seminoma-associated paraneoplastic encephalitis. N. Engl. J. Med. 381, 47–54 (2019).
Google Scholar
Hadjivassiliou, M., Sanders, D. S., Woodroofe, N., Williamson, C. & Grünewald, R. A. Gluten ataxia. Cerebellum 7, 494–498 (2008).
Google Scholar
Gaig, C. et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 88, 1736–1743 (2017).
Google Scholar
Honorat, J. A. et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol. Neuroimmunol. Neuroinflamm. 4, e385 (2017).
Google Scholar
Gaig, C. et al. Frequency and characterization of movement disorders in anti-IgLON5 disease. Neurology 97, e1367–e1381 (2021).
Google Scholar
Mitoma, H., Manto, M. & Hadjivassiliou, M. Immune-mediated cerebellar ataxias: clinical diagnosis and treatment based on immunological and physiological mechanisms. J. Mov. Disord. 14, 10–28 (2021).
Google Scholar
Chan, J. L., Murphy, K. A. & Sarna, J. R. Myoclonus and cerebellar ataxia associated with COVID-19: a case report and systematic review. J. Neurol. 268, 3517–3548 (2021).
Google Scholar
Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).
Google Scholar
Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).
Google Scholar
Pittock, S. J. et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 133, 2626–2634 (2010).
Google Scholar
Tobin, W. O. et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 140, 2415–2425 (2017).
Google Scholar
Mitoma, H. & Manto, M. Recent advances in diagnosis of immune-mediated cerebellar ataxias: novel concepts and fundamental questions on autoimmune mechanisms. J. Neurol. 271, 7046–7053 (2024).
Google Scholar
Krismer, F., Fanciulli, A., Meissner, W. G., Coon, E. A. & Wenning, G. K. Multiple system atrophy: advances in pathophysiology, diagnosis, and treatment. Lancet Neurol. 23, 1252–1266 (2024).
Google Scholar
Bogdan, T. et al. Unravelling the etiology of sporadic late-onset cerebellar ataxia in a cohort of 205 patients: a prospective study. J. Neurol. 269, 6354–6365 (2022).
Google Scholar
Oender, D. et al. Evolution of clinical outcome measures and biomarkers in sporadic adult-onset degenerative ataxia. Mov. Disord. 38, 654–664 (2023).
Google Scholar
Wenning, G. K. et al. The Movement Disorder Society criteria for the diagnosis of multiple system atrophy. Mov. Disord. 37, 1131–1148 (2022).
Google Scholar
Virameteekul, S., Revesz, T., Jaunmuktane, Z., Warner, T. T. & De Pablo-Fernández, E. Pathological validation of the MDS criteria for the diagnosis of multiple system atrophy. Mov. Disord. 38, 444–452 (2023).
Google Scholar
Sekiya, H. et al. Validation study of the MDS criteria for the diagnosis of multiple system atrophy in the Mayo Clinic Brain Bank. Neurology 101, e2460–e2471 (2023).
Google Scholar
Teive, H. A. G., Arruda, W. O., Moro, A., Moscovich, M. & Munhoz, R. P. Differential diagnosis of sporadic adult-onset ataxia: the role of REM sleep behavior disorder. Parkinsonism Relat. Disord. 21, 640–643 (2015).
Google Scholar
Kadodwala, V. H., Hadjivassiliou, M., Currie, S., Skipper, N. & Hoggard, N. Is 1H-MR spectroscopy useful as a diagnostic aid in MSA-C? Cerebellum Ataxias 6, 7 (2019).
Google Scholar
Krismer, F. et al. Progressive brain atrophy in multiple system atrophy: a longitudinal, multicenter, magnetic resonance imaging study. Mov. Disord. 39, 119–129 (2024).
Google Scholar
Spillantini, M. G. et al. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208 (1998).
Google Scholar
Kim, H. Y. et al. A novel brain PET radiotracer for imaging α-synuclein fibrils in multiple system atrophy. J. Med. Chem. 66, 12185–12202 (2023).
Google Scholar
Smith, R. et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat. Commun. 14, 6750 (2023).
Google Scholar
Wirth, T. et al. Progression of nigrostriatal denervation in cerebellar multiple system atrophy: a prospective study. Neurology 98, 232–236 (2021).
Google Scholar
Cong, S., Xiang, C., Wang, H. & Cong, S. Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis. J. Neurol. 268, 2703–2712 (2021).
Google Scholar
Shen, X.-N. et al. Systematic assessment of plasma biomarkers in spinocerebellar ataxia. Neurobiol. Dis. 181, 106112 (2023).
Google Scholar
Okuzumi, A. et al. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nat. Med. 29, 1448–1455 (2023).
Google Scholar
Poggiolini, I. et al. Diagnostic value of cerebrospinal fluid α-synuclein seed quantification in synucleinopathies. Brain 145, 584–595 (2022).
Google Scholar
Rossi, M. et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 140, 49–62 (2020).
Google Scholar
Shahnawaz, M. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).
Google Scholar
Ma, Y. et al. Sensitivity and specificity of a seed amplification assay for diagnosis of multiple system atrophy: a multicentre cohort study. Lancet Neurol. 23, 1225–1237 (2024).
Google Scholar
Donadio, V. et al. Phosphorylated α-synuclein in skin schwann cells: a new biomarker for multiple system atrophy. Brain 146, 1065–1074 (2023).
Google Scholar
Gibbons, C. H. et al. Skin biopsy detection of phosphorylated α-synuclein in patients with synucleinopathies. JAMA 331, 1298–1306 (2024).
Google Scholar
Höglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).
Google Scholar
Gao, A. F. et al. Progressive ataxia and palatal tremor: two autopsy cases of a novel tauopathy. Mov. Disord. 32, 1465–1473 (2017).
Google Scholar
Foutz, A. et al. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann. Neurol. 81, 79–92 (2017).
Google Scholar
Hermann, P. et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt–Jakob disease. Lancet Neurol. 20, 235–246 (2021).
Google Scholar
Zerr, I. et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain 132, 2659–2668 (2009).
Google Scholar
Pedroso, J. L. et al. Cerebellar degeneration and progressive ataxia associated with HIV-virus infection. Parkinsonism Relat. Disord. 54, 95–98 (2018).
Google Scholar
Koralnik, I. J. et al. JC virus granule cell neuronopathy: a novel clinical syndrome distinct from progressive multifocal leukoencephalopathy. Ann. Neurol. 57, 576–580 (2005).
Google Scholar
Bernard-Valnet, R., Koralnik, I. J. & Du Pasquier, R. Advances in treatment of progressive multifocal leukoencephalopathy. Ann. Neurol. 90, 865–873 (2021).
Google Scholar
Klockgether, T., Döller, G., Wüllner, U., Petersen, D. & Dichgans, J. Cerebellar encephalitis in adults. J. Neurol. 240, 17–20 (1993).
Google Scholar
Mitoma, H., Manto, M. & Shaikh, A. G. Mechanisms of ethanol-induced cerebellar ataxia: underpinnings of neuronal death in the cerebellum. Int. J. Environ. Res. Publ. Health 18, 8678 (2021).
Google Scholar
van Gaalen, J., Kerstens, F. G., Maas, R. P. P. W. M., Härmark, L. & van de Warrenburg, B. P. C. Drug-induced cerebellar ataxia: a systematic review. CNS Drugs 28, 1139–1153 (2014).
Google Scholar
Natarajan, U., Onyechi, A. & Ohemeng-Dapaah, J. 5-Fluorouracil neurotoxicity in a patient with normal dihydropyrimidine dehydrogenase activity. Cureus 15, e49898 (2023).
Google Scholar
Dinoto, A., Mantovani, E., Ferrari, S., Mariotto, S. & Tamburin, S. Cerebellar involvement associated with immune checkpoint inhibitors: a systematic review. Eur. J. Neurol. 30, 774–781 (2023).
Google Scholar
Kumar, N. Superficial siderosis: a clinical review. Ann. Neurol. 89, 1068–1079 (2021).
Google Scholar
Flores Martin, A., Shanmugarajah, P., Hoggard, N. & Hadjivassiliou, M. Treatment response of deferiprone in infratentorial superficial siderosis: a systematic review. Cerebellum 20, 454–461 (2021).
Google Scholar
McClugage, S. G. & Oakes, W. J. The Chiari I malformation. J. Neurosurg. Pediatr. 24, 217–226 (2019).
Google Scholar
Barrie, U. et al. Basilar impression: a systematic review and meta-analysis of clinical features, operative strategies, and outcomes. World Neurosurg. 189, 323.e25–338.e25 (2024).
Google Scholar
Bal, B. S., Finelli, F. C., Shope, T. R. & Koch, T. R. Nutritional deficiencies after bariatric surgery. Nat. Rev. Endocrinol. 8, 544–556 (2012).
Google Scholar
Green, R. et al. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 3, 17040 (2017).
Google Scholar
Mariotti, C. et al. Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol. Sci. 25, 130–137 (2004).
Google Scholar
Guerreiro Stucklin, A. S. & Grotzer, M. A. Cerebellar tumors. Handb. Clin. Neurol. 155, 289–299 (2018).
Google Scholar
McClain, K. L. et al. Histiocytic disorders. Nat. Rev. Dis. Prim. 7, 73 (2021).
Google Scholar
Salardaine, Q., Desjardins, C., Baille, G., Roze, E. & Nardin, C. Is ethyl chloride the new nitrous oxide? A case report. BMC Neurol. 24, 186 (2024).
Google Scholar
Manto, M. Toxic agents causing cerebellar ataxias. Handb. Clin. Neurol. 103, 201–213 (2012).
Google Scholar
Olgiati, S., Quadri, M. & Bonifati, V. Genetics of movement disorders in the next-generation sequencing era. Mov. Disord. 31, 458–470 (2016).
Google Scholar
Cortese, A. et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat. Genet. 51, 649–658 (2019).
Google Scholar
Traschütz, A. et al. Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology 96, e1369–e1382 (2021).
Google Scholar
Hadjivassiliou, M. et al. Can CANVAS due to RFC1 biallelic expansions present with pure ataxia? J. Neurol. Neurosurg. Psychiatry 95, 171–174 (2024).
Google Scholar
Sullivan, R. et al. RFC1-related ataxia is a mimic of early multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 92, 444–446 (2021).
Google Scholar
Pellerin, D. et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N. Engl. J. Med. 388, 128–141 (2023).
Google Scholar
Rafehi, H. et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am. J. Hum. Genet. 110, 105–119 (2023).
Google Scholar
Wirth, T. et al. Natural history and phenotypic spectrum of GAA-FGF14 sporadic late-onset cerebellar ataxia (SCA27B). Mov. Disord. 38, 1950–1956 (2023).
Google Scholar
Méreaux, J.-L. et al. Clinical and genetic keys to cerebellar ataxia due to FGF14 GAA expansions. eBioMedicine 99, 104931 (2023).
Google Scholar
Mohren, L. et al. Identification and characterisation of pathogenic and non-pathogenic FGF14 repeat expansions. Nat. Commun. 15, 7665 (2024).
Google Scholar
Pellerin, D. et al. Somatic instability of the FGF14-SCA27B GAA•TTC repeat reveals a marked expansion bias in the cerebellum. Brain 148, 1258–1270 (2024).
Google Scholar
Pfeffer, G. et al. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology 84, 1174–1176 (2015).
Google Scholar
Iruzubieta, P. et al. Frequency and phenotypic spectrum of spinocerebellar ataxia 27B and other genetic ataxias in a Spanish cohort of late-onset cerebellar ataxia. Eur. J. Neurol. 30, 3828–3833 (2023).
Google Scholar
Beijer, D. et al. The genetic landscape of sporadic adult-onset degenerative ataxia: a multi-modal genetic study of 377 consecutive patients from the longitudinal multi-centre SPORTAX cohort. EBioMedicine 115, 105715 (2025).
Google Scholar
Pfeffer, G. et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137, 1323–1336 (2014).
Google Scholar
Hewamadduma, C. A. et al. Novel genotype–phenotype and MRI correlations in a large cohort of patients with SPG7 mutations. Neurol. Genet. 4, e279 (2018).
Google Scholar
Lecocq, C. et al. Delayed-onset Friedreich’s ataxia revisited. Mov. Disord. 31, 62–69 (2016).
Google Scholar
Lynch, D. R. et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann. Neurol. 89, 212–225 (2021).
Google Scholar
Lynch, D. R. et al. Efficacy of omaveloxolone in Friedreich’s ataxia: delayed-start analysis of the MOXIe extension. Mov. Disord. 38, 313–320 (2023).
Google Scholar
Apartis, E. et al. FXTAS: new insights and the need for revised diagnostic criteria. Neurology 79, 1898–1907 (2012).
Google Scholar
Renaud, M. et al. Relevance of corpus callosum splenium versus middle cerebellar peduncle hyperintensity for FXTAS diagnosis in clinical practice. J. Neurol. 262, 435–442 (2015).
Google Scholar
Durr, A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 9, 885–894 (2010).
Google Scholar
Coarelli, G., Coutelier, M. & Durr, A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol. 22, 735–749 (2023).
Google Scholar
Anheim, M., Tranchant, C. & Koenig, M. The autosomal recessive cerebellar ataxias. N. Engl. J. Med. 366, 636–646 (2012).
Google Scholar
Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, 16080 (2016).
Google Scholar
Arnett, A. B., Wang, T., Eichler, E. E. & Bernier, R. A. Reflections on the genetics-first approach to advancements in molecular genetic and neurobiological research on neurodevelopmental disorders. J. Neurodev. Disord. 13, 24 (2021).
Google Scholar
Jobanputra, V. et al. Advancing access to genome sequencing for rare genetic disorders: recent progress and call to action. NPJ Genom. Med. 9, 23 (2024).
Google Scholar
Delude, C. M. Deep phenotyping: the details of disease. Nature 527, S14–S15 (2015).
Google Scholar
Gebus, O. et al. Deciphering the causes of sporadic late-onset cerebellar ataxias: a prospective study with implications for diagnostic work. J. Neurol. 264, 1118–1126 (2017).
Google Scholar
Carré, G. et al. Brain MRI of multiple system atrophy of cerebellar type: a prospective study with implications for diagnosis criteria. J. Neurol. 267, 1269–1277 (2020).
Google Scholar
Federoff, M. et al. Genome-wide estimate of the heritability of multiple system atrophy. Parkinsonism Relat. Disord. 22, 35–41 (2016).
Google Scholar
Wirth, T. et al. Does spinocerebellar ataxia 27B mimic cerebellar multiple system atrophy? J. Neurol. 271, 2078–2085 (2024).
Google Scholar
Ibañez, K. et al. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol. 21, 234–245 (2022).
Google Scholar
Sun, Y. et al. Next-generation diagnostics: gene panel, exome, or whole genome? Hum. Mutat. 36, 648–655 (2015).
Google Scholar
Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).
Google Scholar
Gardner, E. J. et al. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res. 27, 1916–1929 (2017).
Google Scholar
Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).
Google Scholar
Maestri, S. et al. A long-read sequencing approach for direct haplotype phasing in clinical settings. Int. J. Mol. Sci. 21, 9177 (2020).
Google Scholar
Jiang, T., Liu, S., Cao, S. & Wang, Y. Structural variant detection from long-read sequencing data with cuteSV. Methods Mol. Biol. 2493, 137–151 (2022).
Google Scholar
Sakamoto, Y. et al. Long-read whole-genome methylation patterning using enzymatic base conversion and nanopore sequencing. Nucleic Acids Res. 49, e81 (2021).
Google Scholar
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
Google Scholar
Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet. 95, 5–23 (2014).
Google Scholar
Walsh, N., Cooper, A., Dockery, A. & O’Byrne, J. J. Variant reclassification and clinical implications. J. Med. Genet. 61, 207–211 (2024).
Google Scholar
Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).
Google Scholar
Lee, S. et al. Comparison of methylation episignatures in KMT2B– and KMT2D-related human disorders. Epigenomics 14, 537–547 (2022).
Google Scholar
Yépez, V. A. et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 14, 38 (2022).
Google Scholar
Koga, S. et al. Cerebellar ataxia in progressive supranuclear palsy: an autopsy study of PSP-C. Mov. Disord. 31, 653–662 (2016).
Google Scholar
Basile, A. O. & Ritchie, M. D. Informatics and machine learning to define the phenotype. Expert Rev. Mol. Diagn. 18, 219–226 (2018).
Google Scholar
Faber, J. et al. Prominent white matter involvement in multiple system atrophy of cerebellar type. Mov. Disord. 35, 816–824 (2020).
Google Scholar
Tezenas du Montcel, S. et al. Factors influencing disease progression in autosomal dominant cerebellar ataxia and spastic paraplegia. Arch. Neurol. 69, 500–508 (2012).
Google Scholar
Currò, R. et al. Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease. Brain 147, 1887–1898 (2024).
Google Scholar
Chelban, V. et al. Neurofilament light levels predict clinical progression and death in multiple system atrophy. Brain 145, 4398–4408 (2022).
Google Scholar
Tan, A. H. et al. Altered gut microbiome and metabolome in patients with multiple system atrophy. Mov. Disord. 33, 174–146 (2018).
Google Scholar
Öz, G. et al. MR imaging in ataxias: consensus recommendations by the Ataxia Global Initiative Working Group on MRI biomarkers. Cerebellum 23, 931–945 (2023).
Google Scholar
Stephen, C. D., Vangel, M., Gupta, A. S., MacMore, J. P. & Schmahmann, J. D. Rates of change of pons and middle cerebellar peduncle diameters are diagnostic of multiple system atrophy of the cerebellar type. Brain Commun. 6, fcae019 (2024).
Google Scholar
Wegner, P. et al. Sensor-free motion registration and automated movement evaluation: leveraging machine learning for clinical gait analysis in ataxia disorders. Preprint at medRxiv https://doi.org/10.1101/2024.05.29.24308057 (2024).
Hohenfeld, C. et al. Application of quantitative motor assessments in Friedreich ataxia and evaluation of their relation to clinical measures. Cerebellum 18, 896–909 (2019).
Google Scholar
Grobe-Einsler, M. et al. SARAspeech — feasibility of automated assessment of ataxic speech disturbance. NPJ Digit. Med. 6, 43 (2023).
Google Scholar
Devaux, A., Helmer, C., Genuer, R. & Proust-Lima, C. Random survival forests with multivariate longitudinal endogenous covariates. Stat. Methods Med. Res. 32, 2331–2346 (2023).
Google Scholar
Ilg, W. et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73, 1823–1830 (2009).
Google Scholar
Miyai, I. et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil. Neural Repair. 26, 515–522 (2012).
Google Scholar
Marquer, A., Barbieri, G. & Pérennou, D. The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann. Phys. Rehabil. Med. 57, 67–78 (2014).
Google Scholar
He, M., Zhang, H.-N., Tang, Z.-C. & Gao, S.-G. Balance and coordination training for patients with genetic degenerative ataxia: a systematic review. J. Neurol. 268, 3690–3705 (2021).
Google Scholar
Vogel, A. P., Folker, J. & Poole, M. L. Treatment for speech disorder in Friedreich ataxia and other hereditary ataxia syndromes. Cochrane Database Syst. Rev. 2014, CD008953 (2014).
Google Scholar
Egger, K. et al. Voxel based morphometry reveals specific gray matter changes in primary dystonia. Mov. Disord. 22, 1538–1542 (2007).
Google Scholar
Vogel, A. P. et al. Home-based biofeedback speech treatment improves dysarthria in repeat-expansion SCAs. Ann. Clin. Transl. Neurol. 9, 1310–1315 (2022).
Google Scholar
Assadi, M. et al. Treatment of spinocerebellar ataxia with buspirone. J. Neurol. Sci. 260, 143–146 (2007).
Google Scholar
Feil, K. et al. Safety and efficacy of acetyl-DL-leucine in certain types of cerebellar ataxia: the ALCAT randomized clinical crossover trial. JAMA Netw. Open 4, e2135841 (2021).
Google Scholar
Claassen, J. et al. A randomised double-blind, cross-over trial of 4-aminopyridine for downbeat nystagmus — effects on slowphase eye velocity, postural stability, locomotion and symptoms. J. Neurol. Neurosurg. Psychiatry 84, 1392–1399 (2013).
Google Scholar
Wilke, C. et al. GAA-FGF14 ataxia (SCA27B): phenotypic profile, natural history progression and 4-aminopyridine treatment response. Brain 146, 4144–4157 (2023).
Google Scholar
Ristori, G. et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74, 839–845 (2010).
Google Scholar
Romano, S. et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 985–991 (2015).
Google Scholar
Coarelli, G. et al. Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 21, 225–233 (2022).
Google Scholar
Nishizawa, M. et al. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J. Neurol. Neurosurg. Psychiatry 91, 254–262 (2020).
Google Scholar
Qiu, M., Wang, R., Shen, Y., Hu, Z. & Zhang, Y. Efficacy and safety of repetitive transcranial magnetic stimulation in spinocerebellar ataxia type 3: a systematic review and meta-analysis of randomized controlled trials. Cerebellum 23, 1604–1613 (2024).
Google Scholar
Benussi, A., Pascual-Leone, A. & Borroni, B. Non-invasive cerebellar stimulation in neurodegenerative ataxia: a literature review. Int. J. Mol. Sci. 21, 1948 (2020).
Google Scholar
Pilloni, G. et al. Tolerability and feasibility of at-home remotely supervised transcranial direct current stimulation (RS-tDCS): single-center evidence from 6,779 sessions. Brain Stimul. 15, 707–716 (2022).
Google Scholar
Pandey, S. et al. A retrospective study on outcomes following posterior fossa decompression with dural splitting surgery in patients with Chiari type I malformation. Clin. Neurol. Neurosurg. 196, 106035 (2020).
Google Scholar
Peter, E. et al. Cerebellar ataxia with anti-DNER antibodies: outcomes and immunologic features. Neurol. Neuroimmunol. Neuroinflamm. 9, e200018 (2022).
Google Scholar
Spatola, M. et al. Clinical features, prognostic factors, and antibody effects in anti-mGluR1 encephalitis. Neurology 95, e3012–e3025 (2020).
Google Scholar
Shambrook, P. et al. Delayed benefit from aggressive immunotherapy in waxing and waning anti-IgLON5 disease. Neurol. Neuroimmunol. Neuroinflamm. 8, e1009 (2021).
Google Scholar
Kaufmann, H. Droxidopa for symptomatic neurogenic orthostatic hypotension: what can we learn? Clin. Auton. Res. 27 (Suppl. 1), 1–3 (2017).
Google Scholar
Squair, J. W. et al. Implanted system for orthostatic hypotension in multiple-system atrophy. N. Engl. J. Med. 386, 1339–1344 (2022).
Google Scholar
Bendetowicz, D. et al. Recent advances in clinical trials in multiple system atrophy. Curr. Neurol. Neurosci. Rep. 24, 95–112 (2024).
Google Scholar
Mitsui, J. et al. High-dose ubiquinol supplementation in multiple-system atrophy: a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. EClinicalMedicine 59, 101920 (2023).
Google Scholar
Brunet de Courssou, J.-B., Durr, A., Adams, D., Corvol, J.-C. & Mariani, L.-L. Antisense therapies in neurological diseases. Brain 145, 816–831 (2022).
Google Scholar
Mitoma, H., Manto, M. & Gandini, J. Recent advances in the treatment of cerebellar disorders. Brain Sci. 10, 11 (2019).
Google Scholar
Vázquez-Mojena, Y., León-Arcia, K., González-Zaldivar, Y., Rodríguez-Labrada, R. & Velázquez-Pérez, L. Gene therapy for polyglutamine spinocerebellar ataxias: advances, challenges, and perspectives. Mov. Disord. 36, 2731–2744 (2021).
Google Scholar