Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American Heart Association. Circulation. 2023;148(20):1636–64. https://doi.org/10.1161/cir.0000000000001186.
Google Scholar
Claudel SE, Verma A. Cardiovascular-kidney-metabolic syndrome: a step toward multidisciplinary and inclusive care. Cell Metab. 2023;35(12):2104–6. https://doi.org/10.1016/j.cmet.2023.10.015.
Google Scholar
Ahmad FB, Anderson RN. The leading causes of death in the US for 2020. JAMA. 2021;325(18):1829–30. https://doi.org/10.1001/jama.2021.5469.
Google Scholar
Sebastian SA, Padda I, Johal G. Cardiovascular-kidney-metabolic (CKM) syndrome: a state-of-the-art review. Curr Probl Cardiol. 2024;49(2):102344. https://doi.org/10.1016/j.cpcardiol.2023.102344.
Google Scholar
Ji H, Sabanayagam C, Matsushita K, Cheng CY, Rim TH, Sheng B, et al. Sex differences in cardiovascular-kidney-metabolic syndrome: 30-year US trends and mortality risks-brief report. Arterioscler Thromb Vasc Biol. 2025;45(1):157–61. https://doi.org/10.1161/atvbaha.124.321629.
Google Scholar
Li J, Wei X. Association of cardiovascular-kidney-metabolic syndrome with all-cause and cardiovascular mortality: a prospective cohort study. Am J Prev Cardiol. 2025;22:100985. https://doi.org/10.1016/j.ajpc.2025.100985.
Google Scholar
Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112(20):3066–72. https://doi.org/10.1161/circulationaha.105.539528.
Google Scholar
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022;7(1):216. https://doi.org/10.1038/s41392-022-01073-0.
Google Scholar
Liu S, Sun H, Liu J, Wang G. Accessing the relationship between six surrogate insulin resistance indexes and the incidence of rapid kidney function decline and the progression to chronic kidney disease among middle-aged and older adults in China: results from the China health and retirement longitudinal study. Diabetes Res Clin Pract. 2024;212:111705. https://doi.org/10.1016/j.diabres.2024.111705.
Google Scholar
Lee SH, Park SY, Choi CS. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab J. 2022;46(1):15–37. https://doi.org/10.4093/dmj.2021.0280.
Google Scholar
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev. 2022;38(3):e3502. https://doi.org/10.1002/dmrr.3502.
Google Scholar
Zhu Q, Chen Y, Cai X, Cai L, Hong J, Luo Q, et al. The non-linear relationship between triglyceride-glucose index and risk of chronic kidney disease in hypertensive patients with abnormal glucose metabolism: a cohort study. Front Med. 2022;9:1018083. https://doi.org/10.3389/fmed.2022.1018083.
Google Scholar
Yang Z, Gong H, Kan F, Ji N. Association between the triglyceride glucose (TyG) index and the risk of acute kidney injury in critically ill patients with heart failure: analysis of the MIMIC-IV database. Cardiovasc Diabetol. 2023;22(1):232. https://doi.org/10.1186/s12933-023-01971-9.
Google Scholar
Zhao Y, Gu Y, Zhang B. Associations of triglyceride-glucose (TyG) index with chest pain incidence and mortality among the U.S. population. Cardiovasc Diabetol. 2024;23(1):111. https://doi.org/10.1186/s12933-024-02209-y.
Google Scholar
Huo RR, Liao Q, Zhai L, You XM, Zuo YL. Interacting and joint effects of triglyceride-glucose index (TyG) and body mass index on stroke risk and the mediating role of TyG in middle-aged and older Chinese adults: a nationwide prospective cohort study. Cardiovasc Diabetol. 2024;23(1):30. https://doi.org/10.1186/s12933-024-02122-4.
Google Scholar
Huang R, Wang Z, Chen J, Bao X, Xu N, Guo S, et al. Prognostic value of triglyceride glucose (TyG) index in patients with acute decompensated heart failure. Cardiovasc Diabetol. 2022;21(1):88. https://doi.org/10.1186/s12933-022-01507-7.
Google Scholar
Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol. 2018;3(4):280–7. https://doi.org/10.1001/jamacardio.2018.0022.
Google Scholar
Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500. https://doi.org/10.1161/circresaha.120.316101.
Google Scholar
Zhao J, Cai X, Hu J, Song S, Zhu Q, Shen D, et al. J-shaped relationship between weight-adjusted-waist index and cardiovascular disease risk in hypertensive patients with obstructive sleep apnea: a cohort study. Diabetes Metab Syndr Obes. 2024;17:2671–81. https://doi.org/10.2147/dmso.S469376.
Google Scholar
Cheng CK, Ding H, Jiang M, Yin H, Gollasch M, Huang Y. Perivascular adipose tissue: fine-tuner of vascular redox status and inflammation. Redox Biol. 2023;62:102683. https://doi.org/10.1016/j.redox.2023.102683.
Google Scholar
Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593–606. https://doi.org/10.1038/s41569-022-00679-9.
Google Scholar
Koenen M, Hill MA, Cohen P, Sowers JR. Obesity, adipose tissue and vascular dysfunction. Circ Res. 2021;128(7):951–68. https://doi.org/10.1161/circresaha.121.318093.
Google Scholar
Jung MH, Ihm SH. Obesity-related hypertension and chronic kidney disease: from evaluation to management. Kidney Res Clin Pract. 2023;42(4):431–44. https://doi.org/10.23876/j.krcp.23.072.
Google Scholar
Zietzer A, Düsing P, Reese L, Nickenig G, Jansen F. Ceramide metabolism in cardiovascular disease: a network with high therapeutic potential. Arterioscler Thromb Vasc Biol. 2022;42(10):1220–8. https://doi.org/10.1161/atvbaha.122.318048.
Google Scholar
Couch CA, Fowler LA, Goss AM, Gower BA. Associations of renal sinus fat with blood pressure and ectopic fat in a diverse cohort of adults. Int J Cardiol Cardiovasc Risk Prev. 2023;16:200165. https://doi.org/10.1016/j.ijcrp.2022.200165.
Google Scholar
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, et al. The role of perirenal adipose tissue deposition in chronic kidney disease progression: mechanisms and therapeutic implications. Life Sci. 2024;352:122866. https://doi.org/10.1016/j.lfs.2024.122866.
Google Scholar
Li P, Liu B, Wu X, Lu Y, Qiu M, Shen Y, et al. Perirenal adipose afferent nerves sustain pathological high blood pressure in rats. Nat Commun. 2022;13(1):3130. https://doi.org/10.1038/s41467-022-30868-6.
Google Scholar
Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370:m3324. https://doi.org/10.1136/bmj.m3324.
Google Scholar
Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lond). 2008;32(Suppl 3):S56–9. https://doi.org/10.1038/ijo.2008.87.
Google Scholar
Ji M, Zhang S, An R. Effectiveness of a body shape index (ABSI) in predicting chronic diseases and mortality: a systematic review and meta-analysis. Obes Rev. 2018;19(5):737–59. https://doi.org/10.1111/obr.12666.
Google Scholar
Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the China health and retirement longitudinal study (CHARLS). Int J Epidemiol. 2014;43(1):61–8. https://doi.org/10.1093/ije/dys203.
Google Scholar
He H-m, Xie Y-y, Chen Q, Li Y-k, Li X-x, Mu Y-k, et al. The additive effect of the triglyceride-glucose index and estimated glucose disposal rate on long-term mortality among individuals with and without diabetes: a population-based study. Cardiovasc Diabetol. 2024;23(1):307. https://doi.org/10.1186/s12933-024-02396-8.
Google Scholar
He HM, Xie YY, Chen Q, Li YK, Li XX, Fu SJ, et al. The synergistic effect of the triglyceride-glucose index and a body shape index on cardiovascular mortality: the construction of a novel cardiovascular risk marker. Cardiovasc Diabetol. 2025;24(1):69. https://doi.org/10.1186/s12933-025-02604-z.
Google Scholar
Stekhoven DJ, Bühlmann P. Missforest–non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597.
Google Scholar
Luo F, Guo J-j, Yuan X-m, Zhou H, Wang Q-y, Chen C-m, et al. Inflammatory markers mediate the association between alternative adiposity indices and mortality in patients with rheumatoid arthritis: data from NHANES 1999–2018. Lipids Health Dis. 2025;24(1):170. https://doi.org/10.1186/s12944-025-02584-9.
Google Scholar
Guo JJ, Hang QQ, Xu T, Liang WX, Gao JK, Ou HB, et al. Central adiposity indices and inflammatory markers mediate the association between life’s crucial 9 and periodontitis in US adults. Lipids Health Dis. 2025;24(1):199. https://doi.org/10.1186/s12944-025-02619-1.
Google Scholar
Zhang Y, Lu C, Li X, Fan Y, Li J, Liu Y, et al. Healthy eating index-2015 and predicted 10-year cardiovascular disease risk, as well as heart age. Front Nutr. 2022;9:888966. https://doi.org/10.3389/fnut.2022.888966.
Google Scholar
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.
Google Scholar
Yao H, Wang X, Wu X, Liu Y, Chen Y, Li L, et al. Sex differences in association of healthy eating pattern with all-cause mortality and cardiovascular mortality. BMC Public Health. 2024;24(1):2363. https://doi.org/10.1186/s12889-024-19883-y.
Google Scholar
Xu H, Chen C, Lu ZX, Nie Z. rcssci: An R package for visualization of restricted cubic spline. Med Res. 2020. https://doi.org/10.1002/mdr2.70015.
Google Scholar
Wang X, Piantadosi S, Le-Rademacher J, Mandrekar SJ. Statistical considerations for subgroup analyses. J Thorac Oncol. 2021;16(3):375–80. https://doi.org/10.1016/j.jtho.2020.12.008.
Google Scholar
Menyhárt O, Győrffy B. Multiplicity corrections in life sciences: challenges and consequences. Int J Epidemiol. 2025. https://doi.org/10.1093/ije/dyaf098.
Google Scholar
VanderWeele TJ. Causal mediation analysis with survival data. Epidemiology. 2011;22(4):582–5. https://doi.org/10.1097/EDE.0b013e31821db37e.
Google Scholar
VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the e-value. Ann Intern Med. 2017;167(4):268–74. https://doi.org/10.7326/m16-2607.
Google Scholar
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: pathophysiology and treatment. Drug Discov Today. 2022;27(3):822–30. https://doi.org/10.1016/j.drudis.2021.11.001.
Google Scholar
Dang K, Wang X, Hu J, Zhang Y, Cheng L, Qi X, et al. The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003–2018. Cardiovasc Diabetol. 2024;23(1):8. https://doi.org/10.1186/s12933-023-02115-9.
Google Scholar
Huang Y, Zhou Y, Xu Y, Wang X, Zhou Z, Wu K, et al. Inflammatory markers link triglyceride-glucose index and obesity indicators with adverse cardiovascular events in patients with hypertension: insights from three cohorts. Cardiovasc Diabetol. 2025;24(1):11. https://doi.org/10.1186/s12933-024-02571-x.
Google Scholar
Li C, Zhang Z, Luo X, Xiao Y, Tu T, Liu C, et al. The triglyceride-glucose index and its obesity-related derivatives as predictors of all-cause and cardiovascular mortality in hypertensive patients: insights from NHANES data with machine learning analysis. Cardiovasc Diabetol. 2025;24(1):47. https://doi.org/10.1186/s12933-025-02591-1.
Google Scholar
Min Y, Wei X, Wei Z, Song G, Zhao X, Lei Y. Prognostic effect of triglyceride glucose-related parameters on all-cause and cardiovascular mortality in the United States adults with metabolic dysfunction-associated steatotic liver disease. Cardiovasc Diabetol. 2024;23(1):188. https://doi.org/10.1186/s12933-024-02287-y.
Google Scholar
Wei X, Min Y, Song G, Ye X, Liu L. Association between triglyceride-glucose related indices with the all-cause and cause-specific mortality among the population with metabolic syndrome. Cardiovasc Diabetol. 2024;23(1):134. https://doi.org/10.1186/s12933-024-02215-0.
Google Scholar
Qiao Y, Wang Y, Chen C, Huang Y, Zhao C. Association between triglyceride-glucose (TyG) related indices and cardiovascular diseases and mortality among individuals with metabolic dysfunction-associated steatotic liver disease: a cohort study of UK Biobank. Cardiovasc Diabetol. 2025;24(1):12. https://doi.org/10.1186/s12933-024-02572-w.
Google Scholar
Zhang Y, Wu J, Li T, Qu Y, Wang Y. Association of triglyceride-glucose related indices with mortality among individuals with MASLD combined with prediabetes or diabetes. Cardiovasc Diabetol. 2025;24(1):52. https://doi.org/10.1186/s12933-025-02616-9.
Google Scholar
Hu J, Cai X, Li N, Zhu Q, Wen W, Hong J, et al. Association between triglyceride glucose index-waist circumference and risk of first myocardial infarction in Chinese hypertensive patients with obstructive sleep apnoea: an observational cohort study. Nat Sci Sleep. 2022;14:969–80. https://doi.org/10.2147/nss.S362101.
Google Scholar
Wei S, Jiang W, Zheng H, Zhang J, Yang J, Wang Y, et al. The combined impact of BMI and ABSI on all-cause mortality among American adults with diabetes. Diabetol Metab Syndr. 2025;17(1):48. https://doi.org/10.1186/s13098-025-01614-x.
Google Scholar
Huang Y, Wei Z, Wang L, Zhang G, Yang G, Yu J, et al. Association of triglyceride-glucose-related obesity indices with all-cause and cardiovascular mortality among individuals with hyperuricemia: a retrospective cohort study. J Am Nutr Assoc. 2025. https://doi.org/10.1080/27697061.2025.2475876.
Google Scholar
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152–61. https://doi.org/10.1002/jcp.27603.
Google Scholar
Molina MN, Ferder L, Manucha W. Emerging role of nitric oxide and heat shock proteins in insulin resistance. Curr Hypertens Rep. 2016;18(1):1. https://doi.org/10.1007/s11906-015-0615-4.
Google Scholar
Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9. https://doi.org/10.1016/j.freeradbiomed.2010.12.005.
Google Scholar
Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Häring HU. The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol. 2016;12(12):721–37. https://doi.org/10.1038/nrneph.2016.145.
Google Scholar
da Silva AA, do Carmo JM, Li X, Wang Z, Mouton AJ, Hall JE. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Can J Cardiol. 2020;36(5):671–82. https://doi.org/10.1016/j.cjca.2020.02.066.
Google Scholar
Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019;92:98–107. https://doi.org/10.1016/j.metabol.2018.10.011.
Google Scholar
Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. https://doi.org/10.1016/j.metabol.2021.154766.
Google Scholar
Szukiewicz D. Molecular mechanisms for the vicious cycle between insulin resistance and the inflammatory response in obesity. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24129818.
Google Scholar
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3):419–46. https://doi.org/10.1016/j.cell.2021.12.016.
Google Scholar
Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling adipose tissue dysfunction: molecular mechanisms, novel biomarkers, and therapeutic targets for liver fat deposition. Cells. 2024. https://doi.org/10.3390/cells13050380.
Google Scholar
Ng M, Dai X, Cogen RM, Abdelmasseh M, Abdollahi A, Abdullahi A, et al. National-level and state-level prevalence of overweight and obesity among children, adolescents, and adults in the USA, 1990–2021, and forecasts up to 2050. Lancet. 2024;404(10469):2278–98. https://doi.org/10.1016/s0140-6736(24)01548-4.
Google Scholar
Arner P, Viguerie N, Massier L, Rydén M, Astrup A, Blaak E, et al. Sex differences in adipose insulin resistance are linked to obesity, lipolysis and insulin receptor substrate 1. Int J Obes (Lond). 2024;48(7):934–40. https://doi.org/10.1038/s41366-024-01501-x.
Google Scholar
Mitsushio K, Baden MY, Kagisaki T, Kato S, Niki A, Takayama R, et al. Interrelationships among accumulations of intra- and periorgan fats, visceral fat, and subcutaneous fat. Diabetes. 2024;73(7):1122–6. https://doi.org/10.2337/db24-0035.
Google Scholar
Gao W, Sanna M, Chen YH, Tsai MK, Wen CP. Occupational sitting time, leisure physical activity, and all-cause and cardiovascular disease mortality. JAMA Netw Open. 2024;7(1):e2350680. https://doi.org/10.1001/jamanetworkopen.2023.50680.
Google Scholar
Kazibwe R, Chevli PA, Evans JK, Allison M, Michos ED, Wood AC, et al. Association between alcohol consumption and ectopic fat in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2023;12(18):e030470. https://doi.org/10.1161/jaha.123.030470.
Google Scholar
Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, et al. Association of visceral adipose tissue with incident myocardial infarction in older men and women: the health, aging and body composition study. Am J Epidemiol. 2004;160(8):741–9. https://doi.org/10.1093/aje/kwh281.
Google Scholar
Cesaro A, De Michele G, Fimiani F, Acerbo V, Scherillo G, Signore G, et al. Visceral adipose tissue and residual cardiovascular risk: a pathological link and new therapeutic options. Front Cardiovasc Med. 2023;10:1187735. https://doi.org/10.3389/fcvm.2023.1187735.
Google Scholar
Yao Y, Wang B, Geng T, Chen J, Chen W, Li L. The association between TyG and all-cause/non-cardiovascular mortality in general patients with type 2 diabetes mellitus is modified by age: results from the cohort study of NHANES 1999–2018. Cardiovasc Diabetol. 2024;23(1):43. https://doi.org/10.1186/s12933-024-02120-6.
Google Scholar
Zhang Q, Xiao S, Jiao X, Shen Y. The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: evidence from NHANES 2001–2018. Cardiovasc Diabetol. 2023;22(1):279. https://doi.org/10.1186/s12933-023-02030-z.
Google Scholar
Konieczna J, Ruiz-Canela M, Galmes-Panades AM, Abete I, Babio N, Fiol M, et al. An energy-reduced Mediterranean diet, physical activity, and body composition: an interim subgroup analysis of the PREDIMED-Plus randomized clinical trial. JAMA Netw Open. 2023;6(10):e2337994. https://doi.org/10.1001/jamanetworkopen.2023.37994.
Google Scholar
Zelicha H, Kloting N, Kaplan A, Yaskolka Meir A, Rinott E, Tsaban G, et al. The effect of high-polyphenol Mediterranean diet on visceral adiposity: the DIRECT PLUS randomized controlled trial. BMC Med. 2022;20(1):327. https://doi.org/10.1186/s12916-022-02525-8.
Google Scholar
Jayedi A, Soltani S, Emadi A, Zargar MS, Najafi A. Aerobic exercise and weight loss in adults: a systematic review and dose-response meta-analysis. JAMA Netw Open. 2024;7(12):e2452185. https://doi.org/10.1001/jamanetworkopen.2024.52185.
Google Scholar
Batrakoulis A, Jamurtas AZ, Metsios GS, Perivoliotis K, Liguori G, Feito Y, et al. Comparative efficacy of 5 exercise types on cardiometabolic health in overweight and obese adults: a systematic review and network meta-analysis of 81 randomized controlled trials. Circ Cardiovasc Qual Outcomes. 2022;15(6):e008243. https://doi.org/10.1161/circoutcomes.121.008243.
Google Scholar
Cho JH, Shin SY, Kim H, Kim M, Byeon K, Jung M, et al. Smoking cessation and incident cardiovascular disease. JAMA Netw Open. 2024;7(11):e2442639. https://doi.org/10.1001/jamanetworkopen.2024.42639.
Google Scholar
Knowler WC, Doherty L, Edelstein SL, Bennett PH, Dabelea D, Hoskin M, et al. Long-term effects and effect heterogeneity of lifestyle and metformin interventions on type 2 diabetes incidence over 21 years in the US Diabetes Prevention Program randomised clinical trial. Lancet Diabetes Endocrinol. 2025;13(6):469–81. https://doi.org/10.1016/s2213-8587(25)00022-1.
Google Scholar
Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389(24):2221–32. https://doi.org/10.1056/NEJMoa2307563.
Google Scholar
Wang X, Wu N, Sun C, Jin D, Lu H. Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2023;15(1):113. https://doi.org/10.1186/s13098-023-01085-y.
Google Scholar
Xie S, Galimberti F, Olmastroni E, Luscher TF, Carugo S, Catapano AL, et al. Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res. 2024;120(4):333–44. https://doi.org/10.1093/cvr/cvae034.
Google Scholar