Trends in adult. body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387(10026):1377–96.
Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.
Google Scholar
Cecchini M. Use of healthcare services and expenditure in the US in 2025: the effect of obesity and morbid obesity. PLoS ONE. 2018;13(11):e0206703.
Google Scholar
Liu Z, Zhang Y, Graham S, Wang X, Cai D, Huang M, et al. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J Hepatol. 2020;73(2):263–76.
Google Scholar
Tesfai K, Pace J, El-Newihi N, Martinez ME, Tincopa M, Loomba R. Disparities for Hispanic adults with metabolic dysfunction-associated steatotic liver disease in the US: A systematic review and Meta-analysis. Clin Gastroenterol Hepatol. 2025;23(2):236–49.
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal. 2024;18(2):e12039.
Google Scholar
Behari J, Wang R, Luu HN, McKenzie D, Molinari M, Yuan JM. Severe obesity is associated with worse outcomes than lean metabolic dysfunction-associated steatotic liver disease. Hepatol Commun. 2024;8(7):e0471.
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542–56.
Google Scholar
Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic Dysfunction-Associated steatotic liver disease (MASLD): A State-of-the-Art review. J Obes Metab Syndr. 2023;32(3):197–213.
Google Scholar
Fan W, Bradford TM, Török NJ. Metabolic dysfunction-associated liver disease and diabetes: matrix remodeling, fibrosis, and therapeutic implications. Ann N Y Acad Sci. 2024;1538(1):21–33.
Wang JJ, Zheng Z, Zhang Y. Association of hematological biomarkers of inflammation with 10-Year major adverse cardiovascular events and All-Cause mortality in patients with metabolic Dysfunction-Associated steatotic liver disease: the ARIC study. J Inflamm Res. 2024;17:4247–56.
Google Scholar
Chen Q, Hu P, Hou X, Sun Y, Jiao M, Peng L, et al. Association between triglyceride-glucose related indices and mortality among individuals with non-alcoholic fatty liver disease or metabolic dysfunction-associated steatotic liver disease. Cardiovasc Diabetol. 2024;23(1):232.
Google Scholar
Riley DR, Hydes T, Hernadez G, Zhao SS, Alam U, Cuthbertson DJ. The synergistic impact of type 2 diabetes and MASLD on cardiovascular, liver, diabetes-related and cancer outcomes. Liver Int. 2024;44(10):2538–50.
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.
Google Scholar
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: A narrative review outlining implications for precision medicine. J Nutr Biochem. 2024:109704.
Neeland IJ, Poirier P, Després JP. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation. 2018;137(13):1391–406.
Google Scholar
Park Y, Kim NH, Kwon TY, Kim SG. A novel adiposity index as an integrated predictor of cardiometabolic disease morbidity and mortality. Sci Rep. 2018;8(1):16753.
Google Scholar
Li H, Zhong W, Cheng H, Wang S, Li R, Wang L, et al. Association between weight-adjusted-waist index and long-term prognostic outcomes in cardiovascular disease patients: results from the NHANES 1999–2018 study. Diabetol Metab Syndr. 2025;17(1):19.
Google Scholar
Liu S, Chen S, Huang Y, Man Q, Yang Y, Wen J, et al. Association of weight-adjusted waist index with all-cause and cardiovascular disease mortality among rheumatoid arthritis population: a cohort study from the NHANES 1999–2018. Lipids Health Dis. 2025;24(1):223.
Google Scholar
Huang X, Huang Y, Zhou H, Huang Z. Relationship between weight-adjusted-waist index and blood pressure as well as incident hypertension among middle-aged and elderly chinese: A longitudinal study. Nutr Metab Cardiovasc Dis. 2024;34(9):2095–106.
Zha B, Cai A, Wang G. Relationship between obesity indexes and triglyceride glucose index with Gastrointestinal cancer among the US population. Prev Med Rep. 2024;43:102760.
Google Scholar
Fang H, Xie F, Li K, Li M, Wu Y. Association between weight-adjusted-waist index and risk of cardiovascular diseases in united States adults: a cross-sectional study. BMC Cardiovasc Disord. 2023;23(1):435.
Google Scholar
Wang Z, Shao X, Xu W, Xue B, Zhong S, Yang Q. The relationship between weight-adjusted-waist index and diabetic kidney disease in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2024;15:1345411.
Google Scholar
Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.
Google Scholar
Park J, Kim G, Kim BS, Han KD, Kwon SY, Park SH, et al. The associations of hepatic steatosis and fibrosis using fatty liver index and BARD score with cardiovascular outcomes and mortality in patients with new-onset type 2 diabetes: a nationwide cohort study. Cardiovasc Diabetol. 2022;21(1):53.
Google Scholar
Koehler EM, Schouten JN, Hansen BE, Hofman A, Stricker BH, Janssen HL. External validation of the fatty liver index for identifying nonalcoholic fatty liver disease in a population-based study. Clin Gastroenterol Hepatol. 2013;11(9):1201–4.
Google Scholar
Liu Y, Liu S, Huang J, Zhu Y, Lin S. Validation of five hepatic steatosis algorithms in metabolic-associated fatty liver disease: A population based study. J Gastroenterol Hepatol. 2022;37(5):938–45.
Google Scholar
Crudele L, De Matteis C, Novielli F, Di Buduo E, Petruzzelli S, De Giorgi A, et al. Fatty liver index (FLI) is the best score to predict MASLD with 50% lower cut-off value in women than in men. Biol Sex Differ. 2024;15(1):43.
Google Scholar
Cao C, Cade WT, Li S, McMillan J, Friedenreich C, Yang L. Association of balance function with All-Cause and Cause-Specific mortality among US adults. JAMA Otolaryngol Head Neck Surg. 2021;147(5):460–8.
Google Scholar
Kinlen D, Cody D, O’Shea D. Complications of obesity. QJM. 2018;111(7):437–43.
Google Scholar
Smith GI, Polidori DC, Yoshino M, Kearney ML, Patterson BW, Mittendorfer B, et al. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J Clin Invest. 2020;130(6):3305–14.
Google Scholar
Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, et al. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):298.
Google Scholar
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51.
Google Scholar
Ress C, Kaser S. Mechanisms of intrahepatic triglyceride accumulation. World J Gastroenterol. 2016;22(4):1664–73.
Google Scholar
Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol. 2023;78(2):415–29.
Google Scholar
Targher G, Corey KE, Byrne CD. NAFLD, and cardiovascular and cardiac diseases: factors influencing risk, prediction and treatment. Diabetes Metab. 2021;47(2):101215.
Google Scholar
Ravaut G, Légiot A, Bergeron KF, Mounier C. Monounsaturated fatty acids in Obesity-Related inflammation. Int J Mol Sci. 2020;22(1):330.
Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Localization of fat depots and cardiovascular risk. Lipids Health Dis. 2018;17(1):218.
Google Scholar
Friedman SL, Pinzani M. Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 2022;75(2):473–88.
Google Scholar
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol. 2023;78(5):1048–62.
Google Scholar
Lee YA, Friedman SL. Inflammatory and fibrotic mechanisms in NAFLD-Implications for new treatment strategies. J Intern Med. 2022;291(1):11–31.
Google Scholar
Packard CJ, Boren J, Taskinen MR. Causes and consequences of hypertriglyceridemia. Front Endocrinol (Lausanne). 2020;11:252.
Google Scholar
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. Metabolic-Dysfunction-Associated steatotic liver Disease-Its pathophysiology, association with atherosclerosis and cardiovascular disease, and treatments. Int J Mol Sci. 2023;24(20):15473.
Santos-Baez LS, Ginsberg HN. Nonalcohol fatty liver disease: balancing supply and utilization of triglycerides. Curr Opin Lipidol. 2021;32(3):200–6.
Google Scholar
Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut. 2024;73(4):691–702.
Google Scholar
Chandrasekaran P, Weiskirchen R. The role of SCAP/SREBP as central regulators of lipid metabolism in hepatic steatosis. Int J Mol Sci. 2024;25(2):1109.
Lomonaco R, Bril F, Portillo-Sanchez P, Ortiz-Lopez C, Orsak B, Biernacki D, et al. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care. 2016;39(4):632–8.
Google Scholar
Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA, Ganga RR, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology. 2022;76(5):1452–65.
Google Scholar
Dong Z, Zhuang Q, Ye X, Ning M, Wu S, Lu L, et al. Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front Med (Lausanne). 2020;7:546445.
Google Scholar
Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in NAFLD. Cell Metab. 2023;35(2):236–52.
Google Scholar
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. Rom J Morphol Embryol. 2024;65(2):159–72.
Google Scholar
Suwała S, Junik R. Body Mass Index and Waist Circumference as Predictors of Above-Average Increased Cardiovascular Risk Assessed by the SCORE2 and SCORE2-OP Calculators and the Proposition of New Optimal Cut-Off Values: Cross-Sectional Single-Center Study. J Clin Med. 2024;13(7):1931.
Nevill AM, Duncan MJ, Myers T. BMI is dead; long live waist-circumference indices: but which index should we choose to predict cardio-metabolic risk? Nutr Metab Cardiovasc Dis. 2022;32(7):1642–50.
Google Scholar
Tao Z, Zuo P, Ma G. Association of weight-adjusted waist index with cardiovascular disease and mortality among metabolic syndrome population. Sci Rep. 2024;14(1):18684.
Google Scholar
Cao T, Xie R, Wang J, Xiao M, Wu H, Liu X, et al. Association of weight-adjusted waist index with all-cause mortality among non-Asian individuals: a National population-based cohort study. Nutr J. 2024;23(1):62.
Google Scholar
Yu C, He S, Kuang M, Wang C, Huang X, Sheng G, et al. Association between weight-adjusted waist index and non-alcoholic fatty liver disease: a population-based study. BMC Endocr Disord. 2024;24(1):22.
Google Scholar
Kim KJ, Son S, Kim KJ, Kim SG, Kim NH. Weight-adjusted waist as an integrated index for fat, muscle and bone health in adults. J Cachexia Sarcopenia Muscle. 2023;14(5):2196–203.
Google Scholar