Skakkebæk NE, Lindahl-Jacobsen R, Levine H, Andersson AM, Jørgensen N, Main KM, Lidegaard Ø, Priskorn L, Holmboe SA, Bräuner EV, et al. Environmental factors in declining human fertility. Nat Reviews Endocrinol. 2022;18(3):139–57.
Google Scholar
You YA, Park S, Kwon E, Kim YA, Hur YM, Lee GI, Kim SM, Song JM, Kim MS, Kim YJ et al. Maternal PM2.5 exposure is associated with preterm birth and gestational diabetes mellitus, and mitochondrial OXPHOS dysfunction in cord blood. Environmental science and pollution research international 2024.
Thurston GD. Moving beyond PM2.5 mass to more effectively protect health. Am J Respir Crit Care Med 2023.
Kohlhepp LM, Hollerich G, Vo L, Hofmann-Kiefer K, Rehm M, Louwen F, Zacharowski K, Weber CF. [Physiological changes during pregnancy]. Anaesthesist. 2018;67(5):383–96.
Google Scholar
Kapraun DF, Wambaugh JF, Setzer RW, Judson RS. Empirical models for anatomical and physiological changes in a human mother and fetus during pregnancy and gestation. PLoS ONE. 2019;14(5):e0215906.
Google Scholar
Zhao L, Li T, Wang H, Fan YM, Xiao Y, Wang X, Wang S, Sun P, Wang P, Jiangcuo Z et al. Association of co-exposure to metal(loid)s during pregnancy with birth outcomes in the Tibetan plateau. Chemosphere 2023:140144.
Pan SC, Huang CC, Chen BY, Chin WS, Guo YL. Risk of type 2 diabetes after diagnosed gestational diabetes is enhanced by exposure to PM2.5. Int J Epidemiol 2023.
Coogan PF, White LF, Yu J, Burnett RT, Seto E, Brook RD, Palmer JR, Rosenberg L, Jerrett M. PM2.5 and diabetes and hypertension incidence in the black women’s health study. Epidemiol (Cambridge Mass). 2016;27(2):202–10.
Koo EJ, Bae JG, Kim EJ, Cho YH. Correlation between exposure to fine particulate matter (PM2.5) during pregnancy and congenital anomalies: its surgical perspectives. J Korean Med Sci. 2021;36(38):e236.
Google Scholar
Dai XC, Liang DT, Sun F. [PM2.5 exposure-caused damage to male reproductive function: progress in research]. Zhonghua Nan Ke Xue. 2021;27(4):361–5.
Google Scholar
Zhou S, Xi Y, Chen Y, Zhang Z, Wu C, Yan W, Luo A, Wu T, Zhang J, Wu M, et al. Ovarian dysfunction induced by chronic Whole-Body PM2.5 exposure. Small. 2020;16(33):e2000845.
Google Scholar
Trusz A, Ghazal H, Piekarska K. Seasonal variability of chemical composition and mutagenic effect of organic PM2.5 pollutants collected in the urban area of Wrocław (Poland). Sci Total Environ. 2020;733:138911.
Google Scholar
Han L, Zhou W, Pickett ST, Li W, Qian Y. Multicontaminant air pollution in Chinese cities. Bull World Health Organ. 2018;96(4):233–e242.
Google Scholar
Magee LA, Sharma S, Nathan HL, Adetoro OO, Bellad MB, Goudar S, Macuacua SE, Mallapur A, Qureshi R, Sevene E, et al. The incidence of pregnancy hypertension in India, Pakistan, Mozambique, and Nigeria: A prospective population-level analysis. PLoS Med. 2019;16(4):e1002783.
Google Scholar
Grover S, Brandt JS, Reddy UM, Ananth CV. Chronic hypertension, perinatal mortality and the impact of preterm delivery: a population-based study. BJOG. 2022;129(4):572–9.
Google Scholar
Sciatti E, Orabona R. Cardiovascular prevention after hypertensive disorders of pregnancy: do not forget fetal growth restriction! J Am Coll Cardiol. 2021;78(1):91.
Google Scholar
Tita AT, Szychowski JM, Boggess K, Dugoff L, Sibai B, Lawrence K, Hughes BL, Bell J, Aagaard K, Edwards RK, et al. Treatment for mild chronic hypertension during pregnancy. N Engl J Med. 2022;386(19):1781–92.
Google Scholar
Çintesun E, Incesu Çintesun FN, Ezveci H, Akyürek F, Çelik Ç. Systemic inflammatory response markers in preeclampsia. J Lab Physicians. 2018;10(3):316–9.
Google Scholar
Friedman C, Dabelea D, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Starling AP. Exposure to ambient air pollution during pregnancy and inflammatory biomarkers in maternal and umbilical cord blood: the healthy start study. Environ Res. 2021;197:111165.
Google Scholar
Yin J, Xia W, Li Y, Guo C, Zhang Y, Huang S, Jia Z, Zhang A. COX-2 mediates PM2.5-induced apoptosis and inflammation in vascular endothelial cells. Am J Translational Res. 2017;9(9):3967–76.
Google Scholar
Chen CC, Wang YR, Liu JS, Chang HY, Guo YL, Chen PC. Burden of cardiovascular disease attributable to long-term exposure to ambient PM2.5 concentration and the cost-benefit analysis for the optimal control level. Sci Total Environ 2023:164767.
Fujitani Y, Furuyama A, Hayashi M, Hagino H, Kajino M. Assessing oxidative stress induction ability and oxidative potential of PM(2.5) in cities in Eastern and Western Japan. Chemosphere. 2023;324:138308.
Google Scholar
Aguilera J, Konvinse K, Lee A, Maecker H, Prunicki M, Mahalingaiah S, Sampath V, Utz PJ, Yang E, Nadeau KC. Air pollution and pregnancy. Semin Perinatol 2023:151838.
Chen H, Chen X, Hong X, Liu C, Huang H, Wang Q, Chen S, Chen H, Yang K, Sun Q. Maternal exposure to ambient PM(2.5) exaggerates fetal cardiovascular maldevelopment induced by homocysteine in rats. Environ Toxicol. 2017;32(3):877–89.
Google Scholar
Agrawal A, Wenger NK. Hypertension during pregnancy. Curr Hypertens Rep. 2020;22(9):64.
Google Scholar
La Verde M, Luciano M, Fordellone M, Sampogna G, Lettieri D, Palma M, Torella D, Marrapodi MM, Di Vincenzo M, Torella M. Postpartum depression and inflammatory biomarkers of Neutrophil-Lymphocyte ratio, Platelet-Lymphocyte ratio, and Monocyte-Lymphocyte ratio: A prospective observational study. Gynecol Obstet Invest. 2024;89(2):140–9.
Google Scholar
Madendag Y, Madendag IC, Sahin E, Aydin E, Sahin ME, Acmaz G. How well do the popular ultrasonic techniques estimate amniotic fluid volume and diagnose oligohydramnios, in fact?? Ultrasound Q. 2019;35(1):35–8.
Google Scholar
Campbell AG, Miranda PY. Breastfeeding trends among very low birth weight, low birth weight, and normal birth weight infants. J Pediatr. 2018;200:71–8.
Google Scholar
Kim M, Okunowo O, Ades AM, Fuller S, Rintoul NE, Naim MY. Single-Center comparison of outcomes following cardiac surgery in low birth weight and standard birth weight neonates. J Pediatr. 2021;238:161–e167161.
Google Scholar
Edmond K. Introduction to Evidence for Global Health Care Interventions for Preterm or Low Birth Weight Infants. Pediatrics 2022, 150(Suppl 1).
Rumbajan JM, Yamaguchi Y, Nakabayashi K, Higashimoto K, Yatsuki H, Nishioka K, Matsuoka K, Aoki S, Toda S, Takeda S, et al. The HUS1B promoter is hypomethylated in the placentas of low-birth-weight infants. Gene. 2016;583(2):141–6.
Google Scholar
Nkwabong E, Kamgnia Nounemi N, Sando Z, Mbu RE, Mbede J. Risk factors and placental histopathological findings of term born low birth weight neonates. Placenta. 2015;36(2):138–41.
Google Scholar
O’Sharkey K, Xu Y, Cabison J, Rosales M, Yang T, Chavez T, Johnson M, Lerner D, Lurvey N, Corral CMT et al. Effects of In-Utero Personal Exposure to PM2.5 Sources and Components on Birthweight. Research square 2023.
Hao Y, Strosnider H, Balluz L, Qualters JR. Geographic variation in the association between ambient fine particulate matter (PM2.5) and term low birth weight in the united States. Environ Health Perspect. 2016;124(2):250–5.
Google Scholar
Sun X, Luo X, Zhao C, Zhang B, Tao J, Yang Z, Ma W, Liu T. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environ Pollution (Barking Essex: 1987). 2016;211:38–47.
Google Scholar
Larrañaga I, Santa-Marina L, Molinuevo A, Álvarez-Pedrerol M, Fernández-Somoano A, Jimenez-Zabala A, Rebagliato M, Rodríguez-Bernal CL, Tardón A, Vrijheid M, et al. Poor mothers, unhealthy children: the transmission of health inequalities in the INMA study, Spain. Eur J Pub Health. 2019;29(3):568–74.
Google Scholar