Metabolic characteristics in orthoflaviviral infections: unveiling pathogenic mechanisms and therapeutic targets | Virology Journal

  • Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, Imrie A, Kapoor A, Karganova GG, Lemey P, Lohmann V, Simmonds P, Smith DB, Stapleton JT, Kuhn JH. Renaming of the genus flavivirus to orthoflavivirus and extension of binomial species names within the family flaviviridae. Arch Virol. 2023;168:224.

    CAS 
    PubMed 

    Google Scholar 

  • Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: why today? One Health Amst Neth. 2017;4:1–13.

    Google Scholar 

  • Heinz -JBDL, Rice C. 2007. Flaviviridae:T he Viruses and Their Replication.

  • Ci Y, Shi L. Compartmentalized replication organelle of flavivirus at the ER and the factors involved. Cell Mol Life Sci. 2021;78:4939–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peinado RDS, Eberle RJ, Pacca CC, Arni RK, Coronado MA. Review of -omics studies on mosquito-borne viruses of the flavivirus genus. Virus Res. 2022;307:198610.

    CAS 
    PubMed 

    Google Scholar 

  • Nain M, Abdin MZ, Kalia M, Vrati S. Japanese encephalitis virus invasion of cell: allies and alleys. Rev Med Virol. 2016;26:129–41.

    PubMed 

    Google Scholar 

  • Carro SD, Cherry S. Beyond the surface: endocytosis of Mosquito-Borne flaviviruses. Viruses. 2020;13:13.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hackett BA, Cherry S. Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc Natl Acad Sci U S A. 2018;115:4246–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khasa R, Vaidya A, Vrati S, Kalia M. Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells. J Gen Virol. 2019;100:176–86.

    CAS 
    PubMed 

    Google Scholar 

  • Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet L-M, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun. 2024;15:8479.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med. 2021;81:100994.

    CAS 
    PubMed 

    Google Scholar 

  • Cortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, Lampe M, Haselmann U, Funaya C, Schieber N, Ronchi P, Schorb M, Pruunsild P, Schwab Y, Chatel-Chaix L, Ruggieri A, Bartenschlager R. Ultrastructural characterization of Zika virus replication factories. Cell Rep. 2017;18:2113–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arakawa M, Morita E. Flavivirus replication organelle biogenesis in the Endoplasmic reticulum: comparison with other Single-Stranded Positive-Sense RNA viruses. Int J Mol Sci. 2019;20:2336.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by Furin. J Virol. 1997;71:8475–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li L, Lok S-M, Yu I-M, Zhang Y, Kuhn RJ, Chen J, Rossmann MG. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science. 2008;319:1830–4.

    CAS 
    PubMed 

    Google Scholar 

  • Yu I-M, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science. 2008;319:1834–7.

    CAS 
    PubMed 

    Google Scholar 

  • Manchester M, Anand A. Metabolomics: strategies to define the role of metabolism in virus infection and pathogenesis. Adv Virus Res. 2017;98:57–81.

    CAS 
    PubMed 

    Google Scholar 

  • Noto A, Dessi A, Puddu M, Mussap M, Fanos V. Metabolomics technology and their application to the study of the viral infection. J Matern Fetal Neonatal Med; 2014.

  • Roberts LD, Souza AL, Gerszten RE, Clish CB. 2012. Targeted metabolomics. Curr Protoc Mol Biol Chap. 30:Unit 30.2.1–24.

  • Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byers N, Fleshman A, Perera R, Molins C. Metabolomic insights into human arboviral infections: dengue, chikungunya, and Zika viruses. Viruses. 2019;11:225.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog. 2012;8:e1002584.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 2005;24:1537–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Seara H, Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M, Reigada R. Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the Double-Bond position. Biophys J. 2008;95:3295–305.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chernomordik L. Non-bilayer lipids and biological fusion intermediates. Chem Phys Lipids. 1996;81:203–13.

    CAS 
    PubMed 

    Google Scholar 

  • Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998;5:551–62.

    CAS 
    PubMed 

    Google Scholar 

  • Mazzon M, Mercer J. Lipid interactions during virus entry and infection. Cell Microbiol. 2014;16:1493–502.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balasubramanian K, Schroit AJ. Aminophospholipid asymmetry: A matter of life and death. Annu Rev Physiol. 2003;65:701–34.

    CAS 
    PubMed 

    Google Scholar 

  • Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89:1121–32.

    CAS 
    PubMed 

    Google Scholar 

  • Maulik N, Kagan VE, Tyurin VA, Das DK. Redistribution of phosphatidylethanolamine and phosphatidylserine precedes reperfusion-induced apoptosis. Am J Physiol-Heart Circ Physiol. 1998;274:H242–8.

    CAS 

    Google Scholar 

  • Melo CFOR, De Oliveira DN, Lima EDO, Guerreiro TM, Esteves CZ, Beck RM, Padilla MA, Milanez GP, Arns CW, Proença-Modena JL, Souza-Neto JA, Catharino RR. A lipidomics approach in the characterization of Zika-Infected mosquito cells: potential targets for breaking the transmission cycle. PLoS ONE. 2016;11:e0164377.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Onyango MG, Attardo GM, Kelly ET, Bialosuknia SM, Stout J, Banker E, Kuo L, Ciota AT, Kramer LD. Zika virus infection results in biochemical changes associated with RNA editing, inflammatory and antiviral responses in Aedes albopictus. Front Microbiol. 2020;11:559035.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Newman JC, Verdin E. β-Hydroxybutyrate: A signaling metabolite. Annu Rev Nutr. 2017;37:51–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novak MG, Rowley WA. Serotonin depletion affects Blood-Feeding but not Host-Seeking ability in Aedes triseriatus (Diptera: Culieidae). J Med Entomol. 1994;31:600–6.

    CAS 
    PubMed 

    Google Scholar 

  • Novak MG, Ribeiro JM, Hildebrand JG. 5-hydroxytryptamine in the salivary glands of adult female Aedes aegypti and its role in regulation of salivation. J Exp Biol. 1995;198:167–74.

    CAS 
    PubMed 

    Google Scholar 

  • Lewis Robert A, Austen K, Frank, Soberman Roy J. Leukotrienes and other products of the 5-Lipoxygenase pathway. N Engl J Med. 1990;323:645–55.

    Google Scholar 

  • Serhan CN. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011;25:1441–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haskó G, Kuhel DG, Németh ZH, Mabley JG, Stachlewitz RF, Virág L, Lohinai Z, Southan GJ, Salzman AL, Szabó C. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against Endotoxin-Induced Shock1. J Immunol. 2000;164:1013–9.

    PubMed 

    Google Scholar 

  • Hellewell PG, Pearson JD. Metabolism of Circulating adenosine by the Porcine isolated perfused lung. Circ Res. 1983;53:1–7.

    CAS 
    PubMed 

    Google Scholar 

  • Carpenter JA, Keegan LP, Wilfert L, O’Connell MA, Jiggins FM. Evidence for ADAR-induced hypermutation of the Drosophila Sigma virus (Rhabdoviridae). BMC Genet. 2009;10:75.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zinshteyn B, Nishikura K. Adenosine-to-inosine RNA editing. Wiley Interdiscip Rev Syst Biol Med. 2009;1:202–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui L, Lee YH, Kumar Y, Xu F, Lu K, Ooi EE, Tannenbaum SR, Ong CN. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl Trop Dis. 2013;7:e2373.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khedr A, Hegazy MA, Kammoun AK, Shehata MA. Phospholipidomic identification of potential serum biomarkers in dengue fever, hepatitis B and hepatitis C using liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B. 2016;1009:44–54.

    Google Scholar 

  • Voge NV, Perera R, Mahapatra S, Gresh L, Balmaseda A, Loroño-Pino MA, Hopf-Jannasch AS, Belisle JT, Harris E, Blair CD, Beaty BJ. Metabolomics-Based discovery of small molecule biomarkers in serum associated with dengue virus infections and disease outcomes. PLoS Negl Trop Dis. 2016;10:e0004449.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun P, García J, Comach G, Vahey MT, Wang Z, Forshey BM, Morrison AC, Sierra G, Bazan I, Rocha C, Vilcarromero S, Blair PJ, Scott TW, Camacho DE, Ockenhouse CF, Halsey ES, Kochel TJ. Sequential waves of gene expression in patients with clinically defined dengue illnesses reveal subtle disease phases and predict disease severity. PLoS Negl Trop Dis. 2013;7:e2298.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Q, Gouilly J, Ferrat YJ, Espino A, Glaziou Q, Cartron G, El Costa H, Al-Daccak R, Jabrane-Ferrat N. Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nat Commun. 2020;11:2967.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li M, Yang J, Ye C, Bian P, Yang X, Zhang H, Luo C, Xue Z, Lei Y, Lian J. Integrated metabolomics and transcriptomics analyses reveal metabolic landscape in neuronal cells during JEV infection. Virol Sin. 2021;36:1554–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leier HC, Weinstein JB, Kyle JE, Lee J-Y, Bramer LM, Stratton KG, Kempthorne D, Navratil AR, Tafesse EG, Hornemann T, Messer WB, Dennis EA, Metz TO, Barklis E, Tafesse FG. A global lipid map defines a network essential for Zika virus replication. Nat Commun. 2020;11:3652.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hannun YA, Obeid LM. Many Ceramides *. J Biol Chem. 2011;286:27855–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ, Kuhn RJ, Randall G. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci. 2010;107:17345–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang X, Song X, Li Z, Liu N, Yan Y, Liu B. Crosstalk between extracellular vesicles and autophagy in cardiovascular pathophysiology. Pharmacol Res. 2021;172:105628.

    CAS 
    PubMed 

    Google Scholar 

  • Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, Swinnen JV, Pannecouque C, Schols D. Deciphering the role of extracellular vesicles derived from ZIKV-Infected hcMEC/D3 cells on the Blood–Brain barrier system. Viruses. 2021;13:2363.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pang H, Jiang Y, Li J, Wang Y, Nie M, Xiao N, Wang S, Song Z, Ji F, Chang Y, Zheng Y, Yao K, Yao L, Li S, Li P, Song L, Lan X, Xu Z, Hu Z. Aberrant NAD + metabolism underlies Zika virus–induced microcephaly. Nat Metab. 2021;3:1109–24.

    CAS 
    PubMed 

    Google Scholar 

  • Ledur PF, Karmirian K, Pedrosa C, da Souza SG, Assis-de-Lemos LRQ, Martins G, Ferreira TM, de CCG J, de Azevedo Reis GF, Silva ES, Silva D, Salerno JA, Ornelas IM, Devalle S, Madeiro da Costa RF, Goto-Silva L, Higa LM, Melo A, Tanuri A, Chimelli L, Murata MM, Garcez PP, Filippi-Chiela EC, Galina A, Borges HL, Rehen SK. 2020. Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep 10:1218.

  • Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death Physiol Rev. 2018;98:813–80.

    CAS 
    PubMed 

    Google Scholar 

  • Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364–72.

    CAS 
    PubMed 

    Google Scholar 

  • El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, Da Poian AT. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta BBA – Mol Basis Dis. 2007;1772:1158–66.

    CAS 

    Google Scholar 

  • Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, Su K-P, Pariante CM. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry. 2021;26:6773–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villamor E, Villar LA, Lozano-Parra A, Herrera VM, Herrán OF. Serum fatty acids and progression from dengue fever to dengue haemorrhagic fever/dengue shock syndrome. Br J Nutr. 2018;120:787–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui L, Pang J, Lee YH, Ooi EE, Ong CN, Leo YS, Tannenbaum SR. Serum metabolome changes in adult patients with severe dengue in the critical and recovery phases of dengue infection. PLoS Negl Trop Dis. 2018;12:e0006217.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruzek MC, Pearce BD, Miller AH, Biron CA. Endogenous glucocorticoids protect against Cytokine-Mediated lethality during viral Infection1. J Immunol. 1999;162:3527–33.

    CAS 
    PubMed 

    Google Scholar 

  • Cui L, Lee YH, Thein TL, Fang J, Pang J, Ooi EE, Leo YS, Ong CN, Tannenbaum SR. Serum metabolomics reveals serotonin as a predictor of severe dengue in the early phase of dengue fever. PLoS Negl Trop Dis. 2016;10:e0004607.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Walther DJ, Peter J-U, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-Granule release. Cell. 2003;115:851–62.

    CAS 
    PubMed 

    Google Scholar 

  • Falconar AKI. The dengue virus nonstructural-1 protein (NS1) generatesantibodies to common epitopes on human blood clotting,integrin/adhesin proteins and binds to humanendothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol. 1997;142:897–916.

    CAS 
    PubMed 

    Google Scholar 

  • Lin CF, Lei HY, Liu CC, Liu HS, Yeh TM, Anderson R, Lin YS. Patient and mouse antibodies against dengue virus nonstructural protein 1 cross-react with platelets and cause their dysfunction or depletion. Am J Infect Dis. 2008;4:69–75.

    CAS 

    Google Scholar 

  • Cheng H-J, Lei H-Y, Lin C-F, Luo Y-H, Wan S-W, Liu H-S, Yeh T-M, Lin Y-S. Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol Immunol. 2009;47:398–406.

    CAS 
    PubMed 

    Google Scholar 

  • El-Bacha T, Struchiner CJ, Cordeiro MT, Almeida FCL, Marques ET, Da Poian AT. 1 H nuclear magnetic resonance metabolomics of plasma unveils liver dysfunction in dengue patients. J Virol. 2016;90:7429–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui L, Fang J, Ooi EE, Lee YH. Serial metabolome changes in a prospective cohort of subjects with influenza viral infection and comparison with dengue fever. J Proteome Res. 2017;16:2614–22.

    CAS 
    PubMed 

    Google Scholar 

  • Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–96.

    CAS 
    PubMed 

    Google Scholar 

  • Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, Spyridonidis A, Pani G, De Spirito M, Chatgilialoglu C, Ferreri C, Kypreos KE, Sasson S. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res. 2016;50:S40–50.

    CAS 
    PubMed 

    Google Scholar 

  • Schwartz L, Supuran CT, Alfarouk KO. The Warburg effect and the hallmarks of Cancer. Anticancer Agents Med Chem. 2017;17:164–70.

    CAS 
    PubMed 

    Google Scholar 

  • Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res. 2018;11:23–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Oliveira DN, Lima EO, Melo CFOR, Delafiori J, Guerreiro TM, Rodrigues RGM, Morishita KN, Silveira C, Muraro SP, De Souza GF, Vieira A, Silva A, Batista RF, Doriqui MJR, Sousa PS, Milanez GP, Proença-Módena JL, Cavalcanti DP, Catharino RR. Inflammation markers in the saliva of infants born from Zika-infected mothers: exploring potential mechanisms of microcephaly during fetal development. Sci Rep. 2019;9:13606.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T, Priebe W. 2-Deoxy-d-Glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21:234.

    PubMed 
    PubMed Central 

    Google Scholar 

  • King JG, Souto-Maior C, Sartori LM, Maciel-de-Freitas R, Gomes MGM. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat Commun. 2018;9:1483.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading