Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, Imrie A, Kapoor A, Karganova GG, Lemey P, Lohmann V, Simmonds P, Smith DB, Stapleton JT, Kuhn JH. Renaming of the genus flavivirus to orthoflavivirus and extension of binomial species names within the family flaviviridae. Arch Virol. 2023;168:224.
Google Scholar
Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: why today? One Health Amst Neth. 2017;4:1–13.
Heinz -JBDL, Rice C. 2007. Flaviviridae:T he Viruses and Their Replication.
Ci Y, Shi L. Compartmentalized replication organelle of flavivirus at the ER and the factors involved. Cell Mol Life Sci. 2021;78:4939–54.
Google Scholar
Peinado RDS, Eberle RJ, Pacca CC, Arni RK, Coronado MA. Review of -omics studies on mosquito-borne viruses of the flavivirus genus. Virus Res. 2022;307:198610.
Google Scholar
Nain M, Abdin MZ, Kalia M, Vrati S. Japanese encephalitis virus invasion of cell: allies and alleys. Rev Med Virol. 2016;26:129–41.
Google Scholar
Carro SD, Cherry S. Beyond the surface: endocytosis of Mosquito-Borne flaviviruses. Viruses. 2020;13:13.
Google Scholar
Hackett BA, Cherry S. Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc Natl Acad Sci U S A. 2018;115:4246–51.
Google Scholar
Khasa R, Vaidya A, Vrati S, Kalia M. Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells. J Gen Virol. 2019;100:176–86.
Google Scholar
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet L-M, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun. 2024;15:8479.
Google Scholar
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med. 2021;81:100994.
Google Scholar
Cortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, Lampe M, Haselmann U, Funaya C, Schieber N, Ronchi P, Schorb M, Pruunsild P, Schwab Y, Chatel-Chaix L, Ruggieri A, Bartenschlager R. Ultrastructural characterization of Zika virus replication factories. Cell Rep. 2017;18:2113–23.
Google Scholar
Arakawa M, Morita E. Flavivirus replication organelle biogenesis in the Endoplasmic reticulum: comparison with other Single-Stranded Positive-Sense RNA viruses. Int J Mol Sci. 2019;20:2336.
Google Scholar
Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by Furin. J Virol. 1997;71:8475–81.
Google Scholar
Li L, Lok S-M, Yu I-M, Zhang Y, Kuhn RJ, Chen J, Rossmann MG. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science. 2008;319:1830–4.
Google Scholar
Yu I-M, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science. 2008;319:1834–7.
Google Scholar
Manchester M, Anand A. Metabolomics: strategies to define the role of metabolism in virus infection and pathogenesis. Adv Virus Res. 2017;98:57–81.
Google Scholar
Noto A, Dessi A, Puddu M, Mussap M, Fanos V. Metabolomics technology and their application to the study of the viral infection. J Matern Fetal Neonatal Med; 2014.
Roberts LD, Souza AL, Gerszten RE, Clish CB. 2012. Targeted metabolomics. Curr Protoc Mol Biol Chap. 30:Unit 30.2.1–24.
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43.
Google Scholar
Byers N, Fleshman A, Perera R, Molins C. Metabolomic insights into human arboviral infections: dengue, chikungunya, and Zika viruses. Viruses. 2019;11:225.
Google Scholar
Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog. 2012;8:e1002584.
Google Scholar
Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 2005;24:1537–45.
Google Scholar
Martinez-Seara H, Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M, Reigada R. Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the Double-Bond position. Biophys J. 2008;95:3295–305.
Google Scholar
Chernomordik L. Non-bilayer lipids and biological fusion intermediates. Chem Phys Lipids. 1996;81:203–13.
Google Scholar
Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998;5:551–62.
Google Scholar
Mazzon M, Mercer J. Lipid interactions during virus entry and infection. Cell Microbiol. 2014;16:1493–502.
Google Scholar
Balasubramanian K, Schroit AJ. Aminophospholipid asymmetry: A matter of life and death. Annu Rev Physiol. 2003;65:701–34.
Google Scholar
Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89:1121–32.
Google Scholar
Maulik N, Kagan VE, Tyurin VA, Das DK. Redistribution of phosphatidylethanolamine and phosphatidylserine precedes reperfusion-induced apoptosis. Am J Physiol-Heart Circ Physiol. 1998;274:H242–8.
Google Scholar
Melo CFOR, De Oliveira DN, Lima EDO, Guerreiro TM, Esteves CZ, Beck RM, Padilla MA, Milanez GP, Arns CW, Proença-Modena JL, Souza-Neto JA, Catharino RR. A lipidomics approach in the characterization of Zika-Infected mosquito cells: potential targets for breaking the transmission cycle. PLoS ONE. 2016;11:e0164377.
Google Scholar
Onyango MG, Attardo GM, Kelly ET, Bialosuknia SM, Stout J, Banker E, Kuo L, Ciota AT, Kramer LD. Zika virus infection results in biochemical changes associated with RNA editing, inflammatory and antiviral responses in Aedes albopictus. Front Microbiol. 2020;11:559035.
Google Scholar
Newman JC, Verdin E. β-Hydroxybutyrate: A signaling metabolite. Annu Rev Nutr. 2017;37:51–76.
Google Scholar
Novak MG, Rowley WA. Serotonin depletion affects Blood-Feeding but not Host-Seeking ability in Aedes triseriatus (Diptera: Culieidae). J Med Entomol. 1994;31:600–6.
Google Scholar
Novak MG, Ribeiro JM, Hildebrand JG. 5-hydroxytryptamine in the salivary glands of adult female Aedes aegypti and its role in regulation of salivation. J Exp Biol. 1995;198:167–74.
Google Scholar
Lewis Robert A, Austen K, Frank, Soberman Roy J. Leukotrienes and other products of the 5-Lipoxygenase pathway. N Engl J Med. 1990;323:645–55.
Serhan CN. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011;25:1441–8.
Google Scholar
Haskó G, Kuhel DG, Németh ZH, Mabley JG, Stachlewitz RF, Virág L, Lohinai Z, Southan GJ, Salzman AL, Szabó C. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against Endotoxin-Induced Shock1. J Immunol. 2000;164:1013–9.
Google Scholar
Hellewell PG, Pearson JD. Metabolism of Circulating adenosine by the Porcine isolated perfused lung. Circ Res. 1983;53:1–7.
Google Scholar
Carpenter JA, Keegan LP, Wilfert L, O’Connell MA, Jiggins FM. Evidence for ADAR-induced hypermutation of the Drosophila Sigma virus (Rhabdoviridae). BMC Genet. 2009;10:75.
Google Scholar
Zinshteyn B, Nishikura K. Adenosine-to-inosine RNA editing. Wiley Interdiscip Rev Syst Biol Med. 2009;1:202–9.
Google Scholar
Cui L, Lee YH, Kumar Y, Xu F, Lu K, Ooi EE, Tannenbaum SR, Ong CN. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl Trop Dis. 2013;7:e2373.
Google Scholar
Khedr A, Hegazy MA, Kammoun AK, Shehata MA. Phospholipidomic identification of potential serum biomarkers in dengue fever, hepatitis B and hepatitis C using liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B. 2016;1009:44–54.
Voge NV, Perera R, Mahapatra S, Gresh L, Balmaseda A, Loroño-Pino MA, Hopf-Jannasch AS, Belisle JT, Harris E, Blair CD, Beaty BJ. Metabolomics-Based discovery of small molecule biomarkers in serum associated with dengue virus infections and disease outcomes. PLoS Negl Trop Dis. 2016;10:e0004449.
Google Scholar
Sun P, García J, Comach G, Vahey MT, Wang Z, Forshey BM, Morrison AC, Sierra G, Bazan I, Rocha C, Vilcarromero S, Blair PJ, Scott TW, Camacho DE, Ockenhouse CF, Halsey ES, Kochel TJ. Sequential waves of gene expression in patients with clinically defined dengue illnesses reveal subtle disease phases and predict disease severity. PLoS Negl Trop Dis. 2013;7:e2298.
Google Scholar
Chen Q, Gouilly J, Ferrat YJ, Espino A, Glaziou Q, Cartron G, El Costa H, Al-Daccak R, Jabrane-Ferrat N. Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nat Commun. 2020;11:2967.
Google Scholar
Li M, Yang J, Ye C, Bian P, Yang X, Zhang H, Luo C, Xue Z, Lei Y, Lian J. Integrated metabolomics and transcriptomics analyses reveal metabolic landscape in neuronal cells during JEV infection. Virol Sin. 2021;36:1554–65.
Google Scholar
Leier HC, Weinstein JB, Kyle JE, Lee J-Y, Bramer LM, Stratton KG, Kempthorne D, Navratil AR, Tafesse EG, Hornemann T, Messer WB, Dennis EA, Metz TO, Barklis E, Tafesse FG. A global lipid map defines a network essential for Zika virus replication. Nat Commun. 2020;11:3652.
Google Scholar
Hannun YA, Obeid LM. Many Ceramides *. J Biol Chem. 2011;286:27855–62.
Google Scholar
Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ, Kuhn RJ, Randall G. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci. 2010;107:17345–50.
Google Scholar
Yang X, Song X, Li Z, Liu N, Yan Y, Liu B. Crosstalk between extracellular vesicles and autophagy in cardiovascular pathophysiology. Pharmacol Res. 2021;172:105628.
Google Scholar
Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, Swinnen JV, Pannecouque C, Schols D. Deciphering the role of extracellular vesicles derived from ZIKV-Infected hcMEC/D3 cells on the Blood–Brain barrier system. Viruses. 2021;13:2363.
Google Scholar
Pang H, Jiang Y, Li J, Wang Y, Nie M, Xiao N, Wang S, Song Z, Ji F, Chang Y, Zheng Y, Yao K, Yao L, Li S, Li P, Song L, Lan X, Xu Z, Hu Z. Aberrant NAD + metabolism underlies Zika virus–induced microcephaly. Nat Metab. 2021;3:1109–24.
Google Scholar
Ledur PF, Karmirian K, Pedrosa C, da Souza SG, Assis-de-Lemos LRQ, Martins G, Ferreira TM, de CCG J, de Azevedo Reis GF, Silva ES, Silva D, Salerno JA, Ornelas IM, Devalle S, Madeiro da Costa RF, Goto-Silva L, Higa LM, Melo A, Tanuri A, Chimelli L, Murata MM, Garcez PP, Filippi-Chiela EC, Galina A, Borges HL, Rehen SK. 2020. Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep 10:1218.
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death Physiol Rev. 2018;98:813–80.
Google Scholar
Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364–72.
Google Scholar
El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, Da Poian AT. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta BBA – Mol Basis Dis. 2007;1772:1158–66.
Google Scholar
Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, Su K-P, Pariante CM. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry. 2021;26:6773–88.
Google Scholar
Villamor E, Villar LA, Lozano-Parra A, Herrera VM, Herrán OF. Serum fatty acids and progression from dengue fever to dengue haemorrhagic fever/dengue shock syndrome. Br J Nutr. 2018;120:787–96.
Google Scholar
Cui L, Pang J, Lee YH, Ooi EE, Ong CN, Leo YS, Tannenbaum SR. Serum metabolome changes in adult patients with severe dengue in the critical and recovery phases of dengue infection. PLoS Negl Trop Dis. 2018;12:e0006217.
Google Scholar
Ruzek MC, Pearce BD, Miller AH, Biron CA. Endogenous glucocorticoids protect against Cytokine-Mediated lethality during viral Infection1. J Immunol. 1999;162:3527–33.
Google Scholar
Cui L, Lee YH, Thein TL, Fang J, Pang J, Ooi EE, Leo YS, Ong CN, Tannenbaum SR. Serum metabolomics reveals serotonin as a predictor of severe dengue in the early phase of dengue fever. PLoS Negl Trop Dis. 2016;10:e0004607.
Google Scholar
Walther DJ, Peter J-U, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-Granule release. Cell. 2003;115:851–62.
Google Scholar
Falconar AKI. The dengue virus nonstructural-1 protein (NS1) generatesantibodies to common epitopes on human blood clotting,integrin/adhesin proteins and binds to humanendothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol. 1997;142:897–916.
Google Scholar
Lin CF, Lei HY, Liu CC, Liu HS, Yeh TM, Anderson R, Lin YS. Patient and mouse antibodies against dengue virus nonstructural protein 1 cross-react with platelets and cause their dysfunction or depletion. Am J Infect Dis. 2008;4:69–75.
Google Scholar
Cheng H-J, Lei H-Y, Lin C-F, Luo Y-H, Wan S-W, Liu H-S, Yeh T-M, Lin Y-S. Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol Immunol. 2009;47:398–406.
Google Scholar
El-Bacha T, Struchiner CJ, Cordeiro MT, Almeida FCL, Marques ET, Da Poian AT. 1 H nuclear magnetic resonance metabolomics of plasma unveils liver dysfunction in dengue patients. J Virol. 2016;90:7429–43.
Google Scholar
Cui L, Fang J, Ooi EE, Lee YH. Serial metabolome changes in a prospective cohort of subjects with influenza viral infection and comparison with dengue fever. J Proteome Res. 2017;16:2614–22.
Google Scholar
Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–96.
Google Scholar
Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, Spyridonidis A, Pani G, De Spirito M, Chatgilialoglu C, Ferreri C, Kypreos KE, Sasson S. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res. 2016;50:S40–50.
Google Scholar
Schwartz L, Supuran CT, Alfarouk KO. The Warburg effect and the hallmarks of Cancer. Anticancer Agents Med Chem. 2017;17:164–70.
Google Scholar
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res. 2018;11:23–32.
Google Scholar
De Oliveira DN, Lima EO, Melo CFOR, Delafiori J, Guerreiro TM, Rodrigues RGM, Morishita KN, Silveira C, Muraro SP, De Souza GF, Vieira A, Silva A, Batista RF, Doriqui MJR, Sousa PS, Milanez GP, Proença-Módena JL, Cavalcanti DP, Catharino RR. Inflammation markers in the saliva of infants born from Zika-infected mothers: exploring potential mechanisms of microcephaly during fetal development. Sci Rep. 2019;9:13606.
Google Scholar
Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T, Priebe W. 2-Deoxy-d-Glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21:234.
Google Scholar
King JG, Souto-Maior C, Sartori LM, Maciel-de-Freitas R, Gomes MGM. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat Commun. 2018;9:1483.
Google Scholar