Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
Google Scholar
Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet. 2024;403:667–82.
Google Scholar
Dalpadado R, Amarasinghe D, Gunathilaka N, Ariyarathna N. Bionomic aspects of dengue vectors Aedes aegypti and Aedes albopictus at domestic settings in urban, suburban and rural areas in Gampaha District, Western Province of Sri Lanka. Parasit Vectors. 2022;15:148.
Google Scholar
Dzul-Manzanilla F, Ibarra-López J, Bibiano Marín W, Martini-Jaimes A, Leyva JT, Correa-Morales F, et al. Indoor resting behavior of Aedes aegypti (diptera: Culicidae) in Acapulco, Mexico. J Med Entomol. 2017;54:501–4.
Google Scholar
Bitsindou P, Bantsimba-Ndziona M, Lenga A. Distribution actuelle et caractérisations bioécologiques d’Aedes aegypti et d’Aedes albopictus dans deux arrondissements de Brazzaville. Bulletin de la Société de Pathologie Exoique. 2018;111:301–8.
Google Scholar
Kamgang B, Vazeille M, Tedjou AN, Wilson-Bahun TA, Yougang AP, Mousson L, et al. Risk of dengue in Central Africa: vector competence studies with Aedes aegypti and Aedes albopictus (Diptera: Culicidae) populations and dengue 2 virus. PLoS Negl Trop Dis. 2019;13:e0007985.
Google Scholar
Kamgang B, Vazeille M, Tedjou A, Yougang AP, Wilson-Bahun TA, Mousson L, et al. Different populations of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Central Africa are susceptible to Zika virus infection. PLOS Negl Trop Dis. 2020;14:e0008163. https://doi.org/10.1371/journal.pntd.0008163.
Google Scholar
Kamgang B, Vazeille M, Yougang AP, Tedjou AN, Wilson-Bahun TA, Mousson L, et al. Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit yellow fever virus in urban areas in Central Africa. Emerg Microbes Infect. 2019;8:1636–41.
Google Scholar
WHO. Pesticides and their application: for the control of vectors and pests of public health importance. Geneva: World Health Organization; 2006.
Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, et al. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ. 2006;332:1247–52.
Google Scholar
Becker N, Ludwig M, Su T. Lack of resistance in Aedes vexans field populations after 36 years of Bacillus thuringiensis subsp. israelensis applications in the Upper Rhine Valley, Germany. J Am Mosquito Control Assoc. 2018;34:154–7.
Marcombe S, Darriet F, Tolosa M, Agnew P, Duchon S, Etienne M, et al. Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean). PLoS Negl Trop Dis. 2011;5:e1202.
Google Scholar
Al-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Hugo LE, et al. Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. Pest Manag Sci. 2023;79:2846–61.
Google Scholar
Ranson H, Burhani J, Lumjuan N, Black IV WC. Insecticide resistance in dengue vectors. TropIKA net [online]. 2009;1:1.
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.
Google Scholar
Corbel V, Achee NL, Chandre F, Coulibaly MB, Dusfour I, Fonseca DM, et al. Tracking insecticide resistance in mosquito vectors of arboviruses: the worldwide insecticide resistance network (WIN). PLoS Negl Trop Dis. 2016;10:e0005054.
Google Scholar
Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012;104:126–31.
Google Scholar
Corbel V, Kont MD, Ahumada ML, Andréo L, Bayili B, Bayili K, et al. A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study. Parasit Vectors. 2023;16:21.
Google Scholar
Samal RR, Kumar S. Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Int J Trop Insect Sci. 2021;41:809–20.
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Broderick NA, et al. Cuticular profiling of insecticide resistant Aedes aegypti. Sci Rep. 2023;13:10154.
Google Scholar
Paeporn P, Supaphathom K, Sathantriphop S, Chareonviritaphap T, Yaicharoen R. Behavioural responses of deltamethrin-and permethrin-resistant strains of aedes aegypti when exposed to permethrin in an excito-repellency test system. 2007.
Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H, et al. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Sci Rep. 2016;6:24707.
Google Scholar
Daborn PJ, Le Goff G. The genetics and genomics of insecticide resistance. Trends Genet. 2004;20:163–70.
Google Scholar
Sombie A, Saiki E, Yameogo F, Sakurai T, Shirozu T, Fukumoto S, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgande (Ouagadougou), Burkina Faso. Trop Med Health. 2019;47:2. https://doi.org/10.1186/s41182-018-0134-5.
Google Scholar
Kushwah RBS, Dykes CL, Kapoor N, Adak T, Singh OP. Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti. PLoS Negl Trop Dis. 2015;9:e3332.
Google Scholar
Haddi K, Tomé HV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Sci Rep. 2017;7:46549.
Google Scholar
Akhir MAM, Wajidi MFF, Lavoué S, Azzam G, Jaafar IS, Awang Besar NAU, et al. Knockdown resistance (kdr) gene of Aedes aegypti in Malaysia with the discovery of a novel regional specific point mutation A1007G. Parasit Vectors. 2022;15:122. https://doi.org/10.1186/s13071-022-05192-z.
Google Scholar
Maiga A-A, Sombié A, Zanré N, Yaméogo F, Iro S, Testa J, et al. First report of V1016I, F1534C and V410L kdr mutations associated with pyrethroid resistance in Aedes aegypti populations from Niamey, Niger. PLoS ONE. 2024;19:e0304550.
Google Scholar
Yougang AP, Keumeni CR, Wilson-Bahun TA, Tedjou AN, Njiokou F, Wondji C, et al. Spatial distribution and insecticide resistance profile of Aedes aegypti and Aedes albopictus in Douala, the most important city of Cameroon. PLoS ONE. 2022;17:e0278779.
Google Scholar
Yougang AP, Kamgang B, Tedjou AN, Wilson-Bahun TA, Njiokou F, Wondji CS. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS ONE. 2020;15:e0234572.
Google Scholar
Yougang AP, Kamgang B, Bahun TAW, Tedjou AN, Nguiffo-Nguete D, Njiokou F, et al. First detection of F1534C knockdown resistance mutation in Aedes aegypti (Diptera: Culicidae) from Cameroon. Infect Dis Poverty. 2020;9:1–12.
Montgomery M, Harwood JF, Yougang AP, Wilson-Bahun TA, Tedjou AN, Keumeni CR, et al. Spatial distribution of insecticide resistant populations of Aedes aegypti and Ae. albopictus and first detection of V410L mutation in Ae. aegypti from Cameroon. Infect Dis Poverty. 2022;11:1–13.
Kamgang B, Yougang AP, Tchoupo M, Riveron JM, Wondji C. Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaounde, the capital city of Cameroon. Parasit Vectors. 2017;10:469. https://doi.org/10.1186/s13071-017-2408-x.
Google Scholar
Djiappi-Tchamen B, Nana-Ndjangwo MS, Mavridis K, Talipouo A, Nchoutpouen E, Makoudjou I, et al. Analyses of insecticide resistance genes in Aedes aegypti and Aedes albopictus mosquito populations from Cameroon. Genes. 2021;12:828.
Google Scholar
Jupp PG. Mosquitoes of Southern Africa: culicinae and toxorhynchitinae. Hartbeespoort: Ekogilde Publishers; 1996.
Edwards F. Mosquitoes of the Ethiopian Region: Culicine Adults and Pupae. Mosquitoes of the Ethiopian Region: Culicine Adults and Pupae. 1941.
Marcombe S, Mathieu RB, Pocquet N, Riaz M-A, Poupardin R, Sélior S, et al. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS ONE. 2012;7:e30989.
Google Scholar
WHO. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. 2022.
Ishak IH, Jaal Z, Ranson H, Wondji CS. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit Vectors. 2015;8:1–13.
Livak KJ. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984;107:611–34.
Google Scholar
Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores A, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16:785–98.
Google Scholar
Saavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Lenhart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8:6747.
Google Scholar
Leong C-S, Vythilingam I, Liew JW-K, Wong M-L, Wan-Yusoff WS, Lau Y-L. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasit Vectors. 2019;12:1–17.
Google Scholar
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series: 1999. [London]: Information Retrieval Ltd. 1999; 1c1979-c2000:e0007615.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
Google Scholar
Fu Y-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–25.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Google Scholar
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9.
Google Scholar
dos Santos A, Cabezas M, Tavares A, Xavier R, Mii B. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics. 2016;32:627–8.
Kamgang B, Marcombe S, Chandre F, Nchoutpouen E, Nwane P, Etang J, et al. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasit Vectors. 2011;4:1–8.
Kamgang B, Wilson-Bahun TA, Yougang AP, Lenga A, Wondji CS. Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infect Dis Poverty. 2020;9:23. https://doi.org/10.1186/s40249-020-0637-2.
Google Scholar
Ayres CF, Seixas G, Borrego S, Marques C, Monteiro I, Marques CS, et al. The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa. PLoS Negl Trop Dis. 2020;14:e0008216.
Google Scholar
Badolo A, Sombié A, Pignatelli PM, Sanon A, Yaméogo F, Wangrawa DW, et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl Trop Dis. 2019;13:e0007439.
Google Scholar
Sene NM, Mavridis K, Ndiaye EH, Diagne CT, Gaye A, Ngom EHM, et al. Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS Negl Trop Dis. 2021;15:e0009393.
Google Scholar
Kwame Amlalo G, Akorli J, Etornam Akyea-Bobi N, Sowa Akporh S, Aqua-Baidoo D, Opoku M, et al. Evidence of high frequencies of insecticide resistance mutations in Aedes aegypti (Culicidae) mosquitoes in urban Accra, Ghana: implications for insecticide-based vector control of Aedes-borne Arboviral diseases. J Med Entomol. 2022;59:2090–101.
Google Scholar
Kamgang B, Acântara J, Tedjou A, Keumeni C, Yougang A, Ancia A, et al. Entomological surveys and insecticide susceptibility profile of Aedes aegypti during the dengue outbreak in Sao Tome and Principe in 2022. PLoS Negl Trop Dis. 2024;18:e0011903.
Google Scholar
Ngoagouni C, Kamgang B, Brengues C, Yahouedo G, Paupy C, Nakouné E, et al. Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasit Vectors. 2016;9:1–13.
Odjo EM, Akpodji CS, Djènontin A, Salako AS, Padonou GG, Adoha CJ, et al. Did the prolonged residual efficacy of clothianidin products lead to a greater reduction in vector populations and subsequent malaria transmission compared to the shorter residual efficacy of pirimiphos-methyl? Malar J. 2024;23:119.
Google Scholar
Che-Mendoza A, González-Olvera G, Medina-Barreiro A, Arisqueta-Chablé C, Herrera-Bojórquez J, Bibiano-Marín W, et al. Residual efficacy of the neonicotinoid insecticide clothianidin against pyrethroid-resistant Aedes aegypti. Pest Manag Sci. 2023;79:638–44. https://doi.org/10.1002/ps.7231.
Google Scholar
Toé HK, Zongo S, Guelbeogo MW, Kamgang B, Viana M, Tapsoba M, et al. Multiple insecticide resistance and first evidence of V410L kdr mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso. Med Vet Entomol. 2022;36:309–19.
Google Scholar
Sombié A, Ouédraogo WM, Oté M, Saiki E, Sakurai T, Yaméogo F, et al. Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations. Parasit Vectors. 2023;16:137.
Google Scholar
Hernandez JR, Liu S, Fredregill CL, Pietrantonio PV. Impact of the V410L kdr mutation and co-occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA. PLoS Negl Trop Dis. 2023;17:e0011033.
Google Scholar
Granada Y, Mejía-Jaramillo AM, Strode C, Triana-Chavez O. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λ-cyhalothrin in Colombia. Insects. 2018;9:23.
Google Scholar
Abdulai A, Owusu-Asenso CM, Akosah-Brempong G, Mohammed AR, Sraku IK, Attah SK, et al. Insecticide resistance status of Aedes aegypti in southern and northern Ghana. Parasit Vectors. 2023;16:135.
Google Scholar