Guo Q, Zhu X, Beeraka NM, Zhao R, Li S, Li F, et al. Projected epidemiological trends and burden of liver cancer by 2040 based on GBD, C15 Plus, and WHO data. Sci Rep. 2024;14:28131. https://doi.org/10.1038/s41598-024-77658-2.
Google Scholar
Dasgupta P, Henshaw C, Youlden DR, Clark PJ, Aitken JF, Baade PD. Global trends in incidence rates of primary adult liver cancers: a systematic review and meta-analysis. Front Oncol. 2020;10:171. https://doi.org/10.3389/fonc.2020.00171.
Google Scholar
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14. https://doi.org/10.1016/s0140-6736(18)30010-2.
Google Scholar
Shetty S, Sharma N, Ghosh K. Epidemiology of hepatocellular carcinoma (hcc) in hemophilia. Crit Rev Oncol Hematol. 2016;99:129–33. https://doi.org/10.1016/j.critrevonc.2015.12.009.
Google Scholar
Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis. Acta Trop. 2020;203:105309. https://doi.org/10.1016/j.actatropica.2019.105309.
Google Scholar
Kim EM, Kwak YS, Yi MH, Kim JY, Sohn WM, Yong TS. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo. PLoS Negl Trop Dis. 2017;11:e0005614. https://doi.org/10.1371/journal.pntd.0005614.
Google Scholar
Flores-Guerrero JL. Clonorchis sinensis and carcinogenesis risk: biomarkers and underlying pathways. In: Velázquez-Márquez N, Paredes-Juárez GA, Vallejo-Ruiz V, editors. Pathogens associated with the development of cancer in humans: omics, immunological, and pathophysiological studies. Cham: Springer Nature Switzerland; 2024. p. 257–67.
Wei C, Chen J, Yu Q, Qin Y, Huang T, Liu F, et al. Clonorchis sinensis infection contributes to hepatocellular carcinoma progression via enhancing angiogenesis. PLoS Negl Trop Dis. 2024;18:e0012638. https://doi.org/10.1371/journal.pntd.0012638.
Google Scholar
Smout MJ, Lin Q, Tang Z, Qin Y, Deng X, Wei C, et al. Clonorchis sinensis infection amplifies hepatocellular carcinoma stemness, predicting unfavorable prognosis. PLoS Negl Trop Dis. 2024. https://doi.org/10.1371/journal.pntd.0011906.
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Google Scholar
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today. 2021;26:2508–14. https://doi.org/10.1016/j.drudis.2021.07.014.
Google Scholar
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, et al. The lactate receptor gpr81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 2020;39:3292–304. https://doi.org/10.1038/s41388-020-1216-5.
Google Scholar
Hao Z-N, Tan X-P, Zhang Q, Li J, Xia R, Ma Z. Lactate and lactylation: dual regulators of t-cell-mediated tumor immunity and immunotherapy. Biomolecules. 2024;14:1646.
Google Scholar
Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: current progress and open challenges. Front Cell Dev Biol. 2022;10:972020. https://doi.org/10.3389/fcell.2022.972020.
Google Scholar
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, et al. Nbs1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 2024;631:663–9. https://doi.org/10.1038/s41586-024-07620-9.
Google Scholar
Jin Z, Lu Y, Wu X, Pan T, Yu Z, Hou J, et al. The cross-talk between tumor cells and activated fibroblasts mediated by lactate/bdnf/trkb signaling promotes acquired resistance to anlotinib in human gastric cancer. Redox Biol. 2021;46:102076. https://doi.org/10.1016/j.redox.2021.102076.
Google Scholar
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, et al. Kat8-catalyzed lactylation promotes eef1a2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 2024;121:e2314128121. https://doi.org/10.1073/pnas.2314128121.
Google Scholar
Guo XJ, Huang XY, Yang X, Lu JC, Wei CY, Gao C, et al. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmc/pcaf/akt axis. Cell Death Dis. 2023;14:79. https://doi.org/10.1038/s41419-022-05406-3.
Google Scholar
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, et al. Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells. Adv Sci. 2024;11:e2405975. https://doi.org/10.1002/advs.202405975.
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics. 2011;27:1739–40. https://doi.org/10.1093/bioinformatics/btr260.
Google Scholar
Bush SJ. Read trimming has minimal effect on bacterial snp-calling accuracy. Microbial Genom. 2020;6:mgen000434. https://doi.org/10.1099/mgen.0.000434.
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.
Google Scholar
Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Google Scholar
Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L, et al. Using clusterprofiler to characterize multiomics data. Nat Protoc. 2024;19:3292–320. https://doi.org/10.1038/s41596-024-01020-z.
Google Scholar
Langmead B. Aligning short sequencing reads with bowtie. Curr Protoc Bioinform. 2010. https://doi.org/10.1002/0471250953.bi1107s32.
Google Scholar
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of ngs alignment formats. Bioinformatics. 2015;31:2032–4. https://doi.org/10.1093/bioinformatics/btv098.
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. https://doi.org/10.1038/nbt.1754.
Google Scholar
Wang Q, Li M, Wu T, Zhan L, Li L, Chen M, et al. Exploring epigenomic datasets by chipseeker. Curr Protoc. 2022;2:e585. https://doi.org/10.1002/cpz1.585.
Google Scholar
Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. Crossmap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7. https://doi.org/10.1093/bioinformatics/btt730.
Google Scholar
Zhao W, Zhu L, Gong Q, Ma S, Xiong H, Su T, et al. Unidirectional alteration of methylation and hydroxymethylation at the promoters and differential gene expression in oral squamous cell carcinoma. Front Genet. 2023;14:1269084. https://doi.org/10.3389/fgene.2023.1269084.
Google Scholar
Nunn A, Otto C, Stadler PF, Langenberger D. Comprehensive benchmarking of software for mapping whole genome bisulfite data: From read alignment to DNA methylation analysis. Brief Bioinform. 2022;2:e585. https://doi.org/10.1093/bib/bbab021.
Google Scholar
Claps G, Faouzi S, Quidville V, Chehade F, Shen S, Vagner S, et al. The multiple roles of ldh in cancer. Nat Rev Clin Oncol. 2022;19:749–62. https://doi.org/10.1038/s41571-022-00686-2.
Google Scholar
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol. 2022;83:452–71. https://doi.org/10.1016/j.semcancer.2020.07.015.
Google Scholar
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21:151–61. https://doi.org/10.1038/s41577-020-0406-2.
Google Scholar
Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating pd-l1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer. 2022;2:e585. https://doi.org/10.1136/jitc-2020-002305.
Google Scholar
Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, et al. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun. 2023;43:455–79. https://doi.org/10.1002/cac2.12414.
Google Scholar
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour immune barrier in the hcc microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023;78:770–82. https://doi.org/10.1016/j.jhep.2023.01.011.
Google Scholar
Tong W, Wang T, Bai Y, Yang X, Han P, Zhu L, et al. Spatial transcriptomics reveals tumor-derived spp1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med. 2024;22:840. https://doi.org/10.1186/s12967-024-05613-w.
Google Scholar
Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals foxa3 and tnfr1 as key regulators of liver repopulation. Genes Dev. 2015;29:904–9. https://doi.org/10.1101/gad.258855.115.
Google Scholar
Wang L, Li B, Bo X, Yi X, Xiao X, Zheng Q. Hypoxia-induced lncrna dact3-as1 upregulates pkm2 to promote metastasis in hepatocellular carcinoma through the hdac2/foxa3 pathway. Exp Mol Med. 2022;54:848–60. https://doi.org/10.1038/s12276-022-00767-3.
Google Scholar
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. Wtap facilitates progression of hepatocellular carcinoma via m6a-hur-dependent epigenetic silencing of ets1. Mol Cancer. 2019;18:127. https://doi.org/10.1186/s12943-019-1053-8.
Google Scholar
Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, et al. Epigenetic regulation of ferroptosis via ets1/mir-23a-3p/acsl4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:3. https://doi.org/10.1186/s13046-021-02208-x.
Google Scholar
Ozaki I, Mizuta T, Zhao G, Yotsumoto H, Hara T, Kajihara S, et al. Involvement of the ets-1 gene in overexpression of matrilysin in human hepatocellular carcinoma. Cancer Res. 2000;60:6519–25.
Google Scholar
Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019;20:207–20. https://doi.org/10.1038/s41576-018-0089-8.
Google Scholar
Izzo LT, Wellen KE. Histone lactylation links metabolism and gene regulation. Nature. 2019;574:492–3. https://doi.org/10.1038/d41586-019-03122-1.
Google Scholar
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein ythdf2 expression in ocular melanoma. Genome Biol. 2021;22:85. https://doi.org/10.1186/s13059-021-02308-z.
Google Scholar
Jeon AJ, Anene-Nzelu CG, Teo YY, Chong SL, Sekar K, Wu L, et al. A genomic enhancer signature associates with hepatocellular carcinoma prognosis. JHEP Rep: Innov Hepatol. 2023;5:100715. https://doi.org/10.1016/j.jhepr.2023.100715.
Google Scholar
Hu S, Song A, Peng L, Tang N, Qiao Z, Wang Z, et al. H3k4me2/3 modulate the stability of rna polymerase ii pausing. Cell Res. 2023;33:403–6. https://doi.org/10.1038/s41422-023-00794-3.
Google Scholar
Ji H, Zhou Y, Zhuang X, Zhu Y, Wu Z, Lu Y, et al. Hdac3 deficiency promotes liver cancer through a defect in h3k9ac/h3k9me3 transition. Cancer Res. 2019;79:3676–88. https://doi.org/10.1158/0008-5472.Can-18-3767.
Google Scholar
Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Cancer. 2016;16:483–93. https://doi.org/10.1038/nrc.2016.62.
Google Scholar
Lidschreiber K, Jung LA, von der Emde H, Dave K, Taipale J, Cramer P, et al. Transcriptionally active enhancers in human cancer cells. Mol Syst Biol. 2021;17:e9873. https://doi.org/10.15252/msb.20209873.
Google Scholar
Ren X, Wu Y, Song T, Yang Q, Zhou Q, Lin J, et al. Clonorchis sinensis promotes intrahepatic cholangiocarcinoma progression by activating fasn-mediated fatty acid metabolism. J Gastroenterol Hepatol. 2025;40:1004–15. https://doi.org/10.1111/jgh.16879.
Google Scholar
Xu L, Zhang Y, Lin Z, Deng X, Ren X, Huang M, et al. Fasn-mediated fatty acid biosynthesis remodels immune environment in clonorchis sinensis infection-related intrahepatic cholangiocarcinoma. J Hepatol. 2024;81:265–77. https://doi.org/10.1016/j.jhep.2024.03.016.
Google Scholar
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, et al. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol. 2022;12:1063423. https://doi.org/10.3389/fonc.2022.1063423.
Google Scholar
Chen W, Guo L, Xu H, Dai Y, Yao J, Wang L. Nac1 transcriptional activation of ldha induces hepatitis b virus immune evasion leading to cirrhosis and hepatocellular carcinoma development. Oncogenesis. 2024;13:15. https://doi.org/10.1038/s41389-024-00515-4.
Google Scholar
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of hepatitis b virus-related hepatocellular carcinoma. Infect Agent Cancer. 2024;19:31. https://doi.org/10.1186/s13027-024-00593-4.
Google Scholar
Wang H, Zhang Y, Du S. Integrated analysis of lactate-related genes identifies polrmt as a novel marker promoting the proliferation, migration and energy metabolism of hepatocellular carcinoma via wnt/β-catenin signaling. Am J Cancer Res. 2024;14:1316–37. https://doi.org/10.62347/zttg4319.
Google Scholar
Dematei A, Fernandes R, Soares R, Alves H, Richter J, Botelho MC. Angiogenesis in schistosoma haematobium-associated urinary bladder cancer. APMIS. 2017;125:1056–62. https://doi.org/10.1111/apm.12756.
Google Scholar
Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch. 2015;467:623–33. https://doi.org/10.1007/s00428-015-1820-x.
Google Scholar
Rambau PF, Chalya PL, Jackson K. Schistosomiasis and urinary bladder cancer in north western tanzania: a retrospective review of 185 patients. Infect Agent Cancer. 2013;8:19. https://doi.org/10.1186/1750-9378-8-19.
Google Scholar
Weintraub M, Khaled H, Zekri A, Bahnasi A, Eissa S, Venzon D, et al. P53 mutations in egyptian bladder-cancer. Int J Oncol. 1995;7:1269–74. https://doi.org/10.3892/ijo.7.6.1269.
Google Scholar
Vale N, Gouveia MJ, Rinaldi G, Santos J, Santos LL, Brindley PJ, et al. The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancer. Tumour Biol. 2017;39:1010428317692247. https://doi.org/10.1177/1010428317692247.
Google Scholar
Mohammed SA, Hetta HF, Zahran AM, Tolba MEM, Attia RAH, Behnsawy HM, et al. T cell subsets, regulatory t, regulatory b cells and proinflammatory cytokine profile in schistosoma haematobium associated bladder cancer: first report from upper egypt. PLoS Negl Trop Dis. 2023;17:e0011258. https://doi.org/10.1371/journal.pntd.0011258.
Google Scholar
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances hbx-initiated hepatocellular carcinogenesis via nf-κbp65/hk2 signalling. J Exp Clin Cancer Res. 2022;41:329. https://doi.org/10.1186/s13046-022-02531-x.
Google Scholar
Gerresheim GK, Roeb E, Michel AM, Niepmann M. Hepatitis c virus downregulates core subunits of oxidative phosphorylation, reminiscent of the warburg effect in cancer cells. Cells. 2019;8:1410. https://doi.org/10.3390/cells8111410.
Google Scholar