Scott, J. F. Ferroelectrics go bananas. Phys. Condens. Matter 20, 9–11 (2008).
Yang, Y. et al. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634, 833–841 (2024).
Google Scholar
Fukunaga, M. & Noda, Y. New technique for measuring ferroelectric and antiferroelectric hysteresis loops. J. Phys. Soc. Jpn https://doi.org/10.1143/JPSJ.77.064706 (2008).
Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).
Google Scholar
Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).
Google Scholar
Seol, D., Kim, B. & Kim, Y. Non-piezoelectric effects in piezoresponse force microscopy. Curr. Appl Phys. 17, 661–674 (2017).
Google Scholar
Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9, 6484–6492 (2015).
Google Scholar
Kim, B., Seol, D., Lee, S., Lee, H. N. & Kim, Y. Ferroelectric-like hysteresis loop originated from non-ferroelectric effects. Appl. Phys. Lett. 109, 102901 (2016).
Google Scholar
Revenant, C., Toinet, S., Lawrence Bright, E. & Benwadih, M. The longitudinal and transverse piezoelectric effects of the ferroelectric polymer P(VDF-TrFE). Macromol. Mater. Eng. 310, 2400420 (2025).
Gorbunov, A. V. et al. True ferroelectric switching in thin films of trialkylbenzene-1,3,5-tricarboxamide (BTA). Phys. Chem. Chem. Phys. 18, 23663–23672 (2016).
Google Scholar
Urbanaviciute, I. et al. Tuning the ferroelectric properties of trialkylbenzene-1,3,5-tricarboxamide (BTA). Adv. Electron. Mater. 3, 1600530 (2017).