Moitra, P. et al. Programmable wavefront control in the visible spectrum using low-loss chalcogenide phase-change metasurfaces. Adv. Mater. 35, 2205367 (2023).
Google Scholar
Karvounis, A., Gholipour, B., MacDonald, K. F. & Zheludev, N. I. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett. 109, 051103 (2016).
Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).
Google Scholar
Zhang, W., Wu, X., Li, L., Zou, C. & Chen, Y. Fabrication of a VO2-based tunable metasurface by electric-field scanning probe lithography with precise depth control. ACS Appl. Mater. Interfaces 15, 13517–13525 (2023).
Google Scholar
Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).
Google Scholar
Koenderink, A. F. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 6234 (2015).
Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023).
Google Scholar
Jung, C., Lee, E. & Rho, J. The rise of electrically tunable metasurfaces. Sci. Adv. 10, eado8964 (2024).
Google Scholar
Siegel, J. et al. Electrostatic steering of thermal emission with active metasurface control of delocalized modes. Nat. Commun. 15, 3376 (2024).
Google Scholar
Sokhoyan, R., Hail, C. U., Foley, M., Grajower, M. Y. & Atwater, H. A. All-dielectric high-Q dynamically tunable transmissive metasurfaces. Laser Photonics Rev. 18, 2300980 (2024).
Google Scholar
King, J. et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photon. 18, 74–80 (2024).
Google Scholar
Abdollahramezani, S. et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13, 1696 (2022).
Google Scholar
Kim, J. et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics 4, 02400116 (2022).
Google Scholar
Park, S. et al. Electrically focus-tuneable ultrathin lens for high-resolution square subpixels. Light: Sci. Appl. 9, 98 (2020).
Hu, H. et al. Environmental permittivity-asymmetric BIC metasurfaces with electrical reconfigurability. Nat. Commun. 15, 7050 (2024).
Google Scholar
Baranzadeh, F. & Nozhat, N. Tunable metasurface refractive index plasmonic nano-sensor utilizing an ITO thin layer in the near-infrared region. Appl. Opt. 58, 2616 (2019).
Google Scholar
Heßler, A. et al. In3SbTe2 as a programmable nanophotonics material platform for the infrared. Nat. Commun. 12, 924 (2021).
Google Scholar
Leitis, A. et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).
Sha, X. et al. Chirality tuning and reversing with resonant phase-change metasurfaces. Sci. Adv. 10, eadn9017 (2024).
Google Scholar
Wang, H. et al. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces. Sci. Adv. 10, eadk3882 (2024).
Google Scholar
Malek, S. C., Overvig, A. C., Shrestha, S. & Yu, N. Active nonlocal metasurfaces. Nanophotonics 10, 655–665 (2021).
Crotti, G. et al. Giant ultrafast dichroism and birefringence with active nonlocal metasurfaces. Light: Sci. Appl. 13, 204 (2024).
Weigand, H. C. et al. Nanoimprinting solution-derived barium titanate for electro-optic metasurfaces. Nano Lett. 24, 5536–5542 (2024).
Google Scholar
Howes, A., Wang, W., Kravchenko, I. & Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018).
Google Scholar
Aigner, A. et al. Engineering of active and passive loss in high-quality-factor vanadium dioxide-based BIC metasurfaces. Nano Lett. 24, 10742–10749 (2024).
Google Scholar
Lucarini, V., Peiponen, K.-E., Saarinen, J. J. & Vartiainen, E. M. in Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).
Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569 (2003).
Google Scholar
Joseph, S., Pandey, S., Sarkar, S. & Joseph, J. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics 10, 4175–4207 (2021).
Google Scholar
Overvig, A. C., Malek, S. C., Carter, M. J., Shrestha, S. & Yu, N. Selection rules for quasibound states in the continuum. Phys. Rev. B 102, 035434 (2020).
Google Scholar
Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).
Google Scholar
Ma, W. et al. Active quasi-BIC metasurfaces assisted by epsilon-near-zero materials. Opt. Express 31, 13125 (2023).
Google Scholar
Tian, F., Zhou, J., Abraham, E. & Liu, Z. Tunable dielectric BIC metasurface for high resolution optical filters. J. Phys. D 56, 134002 (2023).
Google Scholar
Sinev, I. S. et al. Observation of ultrafast self-action effects in quasi-BIC resonant metasurfaces. Nano Lett. 21, 8848–8855 (2021).
Google Scholar
Kwon, H., Zheng, T. & Faraon, A. Nano-electromechanical tuning of dual-mode resonant dielectric metasurfaces for dynamic amplitude and phase modulation. Nano Lett. 21, 2817–2823 (2021).
Google Scholar
Karl, N. et al. All-optical tuning of symmetry protected quasi bound states in the continuum. Appl. Phys. Lett. 115, 141103 (2019).
Han, S. et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater. 31, 1901921 (2019).
Google Scholar
Stillinger, F. H. & Herrick, D. R. Bound states in the continuum. Phys. Rev. A 11, 446–454 (1975).
Google Scholar
Berté, R. et al. All-optical permittivity-asymmetric quasi-bound states in the continuum. Light: Sci. Appl. 14, 185 (2025).
Google Scholar
Yang, Z. et al. Ultrafast Q-boosting in semiconductor metasurfaces. Nanophotonics 13, 2173–2182 (2024).
Google Scholar
Berté, R. et al. Permittivity-asymmetric quasi-bound states in the continuum. Nano Lett. 23, 2651–2658 (2023).
Google Scholar
Ndi, F. C., Toulouse, J., Hodson, T. & Prather, D. W. All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect. Opt. Lett. 30, 2254 (2005).
Google Scholar
Lui, K. P. H. & Hegmann, F. A. Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments. Appl. Phys. Lett. 78, 3478–3480 (2001).
Google Scholar
Aigner, A., Weber, T., Wester, A., Maier, S. A. & Tittl, A. Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces. Nat. Nanotechnol. 19, 1804–1812 (2024).
Google Scholar
Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).
Google Scholar
Gorkunov, M. V., Antonov, A. A., Mamonova, A. V., Muljarov, E. A. & Kivshar, Y. Substrate‐induced maximum optical chirality of planar dielectric structures. Adv. Opt. Mater. 13, 2402133 (2025).
Google Scholar
Barati Sedeh, H., Salary, M. M. & Mosallaei, H. Optical pulse compression assisted by high‐Q time‐modulated transmissive metasurfaces. Laser Photonics Rev. 16, 2100449 (2022).
Asgari, M. M et al. Theory and applications of photonic time crystals: a tutorial. Adv. Opt. Photon. 16, 958–1063 (2024).
Hang, X. I. Z. et al. Giant magneto-optical Kerr effects governed by the quasi-bound states in the continuum. Opt. Express 32, 38720–38729 (2024).
Schinke, C. et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 5, 067168 (2015).
Aigner, A. et al. Data supporting publication: Optical control of resonances in temporally symmetry-broken metasurfaces. Zenodo https://doi.org/10.5281/zenodo.15662526 (2025).